ME1315

ELECTRONICS AND COMMUNICATION ENGINEERING Paper - 2

Sl.No.: 517789

Series

Duration: 150 Minutes

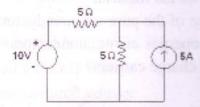
Max. Marks: 300

INSTRUCTIONS TO CANDIDATES

- 1. Please check the Test Booklet immediately on opening and ensure that it contains all the 150 multiple choice questions printed on it.
- 2. Separate Optical Mark Reader (OMR) Answer Sheet is supplied to you along with the Question Paper Booklet. The OMR Answer sheet consists of two copies i.e., the Original Copy (Top Sheet) and Duplicate Copy (Bottom Sheet). The OMR sheet contains Registered Number/Hall Ticket Number, Subject/Subject Code, Booklet Series, Name of the Examination Centre, Signature of the Candidate and Invigilator etc.,
- 3. If there is any defect in the Question Paper Booklet or OMR answer sheet, please ask the invigilator for replacement.
- 4. Since the answer sheets are to be scanned (valued) with Optical Mark Scanner system, the candidates have to USE BALL POINT PEN (BLUE/BLACK) ONLY for filling the relevant blocks in the OMR Sheet including bubbling the answers. Bubbling with Pencil / Ink Pen Gel Pen is not permitted in the examination.
- 5. The Test Booklet is printed in four (4) Series, viz. A or B or C or D. The Series A or B or C or D is printed on the right-hand corner of the cover page of the Test Booklet. Mark your Test Booklet Series in Part C on side 1 of the Answer Sheet by darkening the appropriate circle with Blue/Black Ball point pen.

Example to fill up the Booklet series

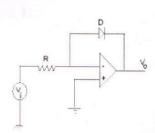
If your test Booklet Series is A, please fill as shown below:



504/A

- 1) A capacitor C is connected across a coil with resistance R and inductance L. The effective of the circuit at resonance is

- (1) $\frac{1}{RLC}$ (2) $\frac{RC}{L}$ (3) $\frac{L}{RC}$ (4) $\frac{L}{\sqrt{RC}}$
- The voltage across 5 A source in the given circuit is 2)
 - (1) 17.5 volt (2) 25 volt
- (3) 15 volt
- (4) 20 volt



- The current i(t) through a 10Ω resistor in series with an inductance is given by $i(t) = 3 + 4 \sin(100t + 45^{\circ}) + 4\sin(300t + 60^{\circ})$ Amperes. The rms value of the current and the power dissipated in the circuit are

- (1) 40 A, 410W (2) 10A, 350W (3) 5A, 250W (4) 11A, 250W
- 4) An ideal voltage source and current sources are connected in parallel. This circuit has
 - (1) neither Thevenin nor Norton's equivalent
 - (2) both Thevinin and Norton's equivalent
 - (3) a Thevenin equivalent but not Norton's equivalent
 - (4) a Norton's equivalent but not Thevenin equivalent
- A transient current in a network is $i(t) = 2e^{-t} e^{-5t}$, $t \ge 0$. The pole-zero configuration of I(s) is
 - (1) poles : 1,5 zeros : 9
 - (2) poles: -1, -5 zeros: -9
 - (3) poles: 2, -1 zeros: -1, -5
 - (4) poles: 2, -1 zeros: 1, 5
- 6) $F(s) = \frac{(s+1)(s+3)}{s(s+2)}$ represents an
 - (1) RC impedance and an RL admittance
 - (2) RL admittance
 - (3) RC impedance
 - (4) RC admittance

- The transfer function of a system Z(s) = V(s)/I(s) = s/(s+3). The system is at rest for t < 0. What will be the value of v(t) for $t \ge 0$, if i(t) = 3 u(t), where u(t) is a step function
 - $(1) e^{-t}$
- (2) 4 e^{-t}
- $(3) 2 e^{-3t}$
- Doping materials are called impurities because they
 - (1) change the temperature of the material
 - (2) alter the crystal structure of the pure semiconductor
 - (3) change the chemical properties of semiconductors
 - (4) decrease the number of charge carriers
- In IC technology, dry oxidation as compared to wet oxidation produces 9)
 - (1) superior quality oxide with a lower growth rate
 - (2) superior quality oxide with a higher growth rate
 - (3) inferior quality oxide with a lower growth rate
 - (4) inferior quality oxide with a higher growth rate
- 10) In a transistor $h_{fe} = 50$, $h_{ie} = 830\Omega$, $h_{oe} = 10^{-4}$ mho. Its output resistance when used in CB configuration is about
 - (1) $2 M\Omega$
- (2) 2.5 M Ω
- (3) 500 Ω
- (4) $500 \text{ K}\Omega$
- 11) The circuit shown in the figure can be used as a
 - (1) full wave rectifier

- (2) voltage to frequency converter
- (3) logarithmic amplifier
- (4) frequency to voltage converter

- 12) KCL is a consequences of law of conservation of
 - (1) flux
- (2) energy
- (3) potential (4) charge

- **19)** The network function $F(s) = \frac{(s+2)}{(s+1)(s+3)}$ Represents an
 - (1) RC admittance and an RL impedance
 - (2) RC impedance
 - (3) RL impedance
 - (4) RC impedance and an RL admittance
- 20) If a two-port network is reciprocal as well as symmetrical, which one of the following conditions true
 - (1) $Z_{12} = Z_{21}$ and $Z_{11} = Z_{22}$
 - (2) $Z_{11} = Z_{21}$ and $Z_{12} = Z_{22}$
- $Y_{11} = Y_{21}$ and $Y_{12} = Y_{22}$
 - (4) AD + BC = 1 and A = C
- 21) An intrinsic semiconductor at absolute zero temperature
 - (1) has large number of holes
 - (2) has a large number of electrons
 - (3) behaves like an insulator
 - (4) behaves like a metallic conductor
- 22) A diode clamper also referred to as a
 - (1) series rectifier

(2) series clamper

(3) shunt rectifier

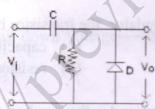
- (4) shunt clamper
- 23) The Ebers-Moll model is applicable to
- (1) Junction FET
- (2) UJT (3) NMOS (4) BJT
- 24) When the frequency of the input signal to a CMOS gate is increased, the average power dissipation
 - (1) does not change
- (2) increases

(3) decreases

(4) decreases exponentially

- 25) Photo masking
 - 18) The Laplace transform of the function (t) is / 1 (1) controls the depth of diffusion
 - (2) is used to prevent ambient light shining on the silicon slice
 - (3) is used in the process to remove selected regions of silicon oxide
 - (4) reduce the size of the circuit elements

ALMAI A


- **26)** The self bias is used in amplifiers to
 - (1) reduce the cost of the circuit
 - (2) reduce the dc base current
- (3) make the operating point almost independent of β
 - (4) limit the input ac signal going to the base terminal
- 27) The h- parameter equivalent circuit of a BJT is valid for
- (1) low frequency, large signal operation
 - (2) low frequency, small signal operation
 - (3) high frequency, small signal operation
 - (4) high frequency, large signal operation
- 28) In a centre-tap full wave rectifier, V_m is the peak voltage between the centretap and one of the secondary. The maximum voltage across the reverse biased diode is

 - (1) V_{m} (2) $2 V_{m}$

- 29) The circuit shown in figure is a
 - (1) positive peak clipper
- positive clamper

(3) differentiator

(4) negative clamper

- 30) The gain of a transistor amplifier falls at high frequency due to the
 - (1) coupling capacitor at the output
 - (2) skin effect
 - (3) internal capacitances of device
 - (4) coupling capacitor at the input
- 31) Darlington pair consists of the following two stages
 - (1) both CE
- (2) CE and CB (3) CE and CC (4) both CC
- 32) The voltage gain of an amplifier is 100. On applying negative feedback with $\beta = 0.03$, its gain will reduce to
 - (1) 50
- (3) 3.0
- (4) 25

33)	504/A The main function of the transformer used in the output of a power amplifier is
	(1) to step up the voltage
	(2) to step down the voltage (2)
	(3) to match the load impedance with dynamic output resistance of the transistor
	(4) to increase voltage gain
34)	The bandwidth of a double tuned transformer coupled amplifier can be adjusted by varying the
	(1) coupling coefficient coefficient coupling coefficient coupling coefficient coupling coefficient coefficient coupling coefficient coupling coefficient co
	(2) value of the inductance
	(3) value of the emitter biasing resistance
	(4) value of resistance
	rap and one of the Associative. The maximum voltage across the re-
35)	Crossover distortion results in
	(1) class B output stage
	(2) common emitter output stage
	(3) class AB output stage
	(4) class A output stage
	(3) differentiator
36)	In transistor series voltage regulator the transistor behaves like a variable
	(1) resistor (2) capacitor
	(3) inductor (4) resistor and capacitor
	3) Shunr riseral cal
37)	If b is the number of branches and n the number of nodes in a connected graph, the number of links corresponding to any tree of the graph
	(1) $b - n - 1$ (2) $b - n + 1$ (3) $n - b - 1$ (4) $n + 1 - b$
38)	The number of edges in a complete graph of n vertices is
	(1) $n/(n-1)$ (2) $n-1$ (3) n (4) $n/2$
20)	(1) does not change (2) independ (3) independent (4) independe
39)	Superposition theorem is not applicable to networks containing
	(1) nonlinear elements (2) and (3) are sources (4) and (5) (5) (6) (7)
	(2) dependent voltage sources
	(3) dependent current sources (1) a voll down to a supplied of (2) (4) transformers
	(4) transformers

						504/A
40)	In an	RLC parallel	circuit the in	pedance at	resonance is	
	(1)	∞		(2)	minimum	
	(3)	maximum		(4)	zero	
41)	Any	two-port netw	ork having a	6dB loss w	ill give	
	(1)	an output pov				
	(2)			-	of the input power	
	(3)	an output pov	ver which is o	one half of t	he input power	
	(4)	an output volt	tage which is	0.707 of th	e input voltage	SELECTION OF THE PERSON OF THE
					al Ca	
42)	For a	a reciprocal ne	twork, the tw	o port h- par	rameters are related	as follows
		$h_{12} = h_{21}$			$h_{11}h_{22} - h_{21}h_{12} = 1$	in the state of
	(3)	$h_{11}h_{22} - h_{21}h_{12}$	= -1	(4)	$h_{12} = -h_{21}$	
43)	Whic	ch of the follo	wing is not as	ssociated wi	th a PN junction?	
n ha		depletion capa			a Company and a multiple and	
		junction capac			Venture de l'aux	
	(3)	charge storage	e capacitance		15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	(4)	channel lengt	h modulation	110		
44)	Zene	er diode break	down voltag	e	—with temperatur	e
	(1)	decreases	in thinking Cal	(2)		
	(3)	increases	115	(4)	may increase or de	crease
45)	The	output V-I cha	aracteristics o	f an enhance	ement type MOSFE	T has
	(1)	an ohmic reg	ion at low vo		followed by a satura	
	(0)	at higher volt				
	(2)	at lower volta		oltage values	preceded by a satur	ation region
	(3)	only an ohmi	c region			
	(4)	only a saturat	ion region			
46)	Турі	ical value of h	is is			
	(1)	1ΚΩ	(2) 1 Ω	(3)	100 KΩ (4) 5	Ω 03
					orders to a temporal state	

47) The ripple factor of a bridge rectifier is
(1) 1.11 (2) 0.121 (3) 1.21 (4) 0.812

19)	The ideal On Ame 1	follow			50	4/A
40)	The ideal Op-Amp I	nas follow	ing characteri	stics	D. O	
	(1) $R_i = \infty$, $A = \infty$, (3) $R_i = \infty$, $A = \infty$,	$R_0 = 0$	(2)	$R_i = 0, A =$	∞ , $R_0 = 0$	
	$(3) \mathbf{R}_{\mathbf{i}} = \infty, \ \mathbf{A} = \infty,$	$R_0 = \infty$	(4)	$R_i = 0, A =$	∞ , $R_0 = \infty$	
49)	In a half-wave rectified will be	ier, if an a	.c supply is 60	Hz, then the	a.c ripple at ou	ıtput
		(2) 30Hz	(3)	60Hz	(4) 120Hz	
50)	Maximum theoretica	ıl conversi	on efficiency	of class B an	polifier is	
			(3)			
51)	In a logic equation	$A(A + \overline{B}\overline{C} +$	$-C)+\overline{B}(\overline{C}+\overline{A}+$	$BC) + (A + \vec{B}C)$	$+A\overline{C}$)=1, if C	$d = \overline{A}$
	then			1-4-)		
	(1) A+B=1	(2) $\overline{A} + B$	$=1 \qquad (3)$	$A + \overline{B} = 1$	(4) $A = 1$	
52)	The maximum posit	ive and ne	egative number	ers which car	he represente	d in
	2's compliment form			Samuelle Car	oe represente	d III
	(1) $+(2^{n-1}-1), -($			$+(2^{n-1}-1),$	- 2 ⁿ⁻¹	
	$(3) + 2^{n-1}, -2^{n-1}$			none		
	li valissior intere					
53)	What is the resolution	n of a nine	bit D/A conv	erter which u	ses ladder netv	vork
	in percentage?	m (ii)				
	(1) 1	(2) 2	(3)	4	(4) 10	
54)	In a positive edge tr	iggered JI	K flip-flop, the	e present stat	e Q _n is set to 1	high
	(1). If the inputs J:	=A and K	=B then next :	state Q _{n+1} wil	l be	
		(2) \overline{A}		A + B		
55)	In PLA both AND a	nd OR an	avs are			
	(1) Non-programm		(2)	Programma		
	(3) 1 and 2		(4)	NI		

56) Pick the wrong statement of CMOS (1) Low power dissipation

(2) Poor Noise immunity

(3) High packing density

(4) Wide range of supply voltages

57)	The signal $e^{-t}u(t)$ is applied as input time-constant equal to 1. The energy filter at the 3-db cutoff frequency of (1) 1 (2) 0.5	gy spectrof the filt	ral density at the output of the
58)	Two LTI systems with impulse res series(cascade), the impulse respons		4 4
	(1) $h_1(t) + h_2(t)$	(2)	$\frac{h_1(t) h_2(t)}{h_1(t) + h_2(t)}$
	(3) $h_1(t) * h_2(t)$	(4)	$h_1(t).h_2(t)$
59)	Which of the following system is ca (1) $h(n)=n(\frac{1}{2})^n u(n+1)$		$y(n)=x^{2}(n)-x(n+1)$
	(3) $y(n)=x(-n)+x(2n-1)$	(4)	$h(n)=n(\frac{1}{2})^n u(n)$
60)	Two parallel connected discrete time and h ₂ (n) can be replaced by a sing impulse response,	1000	1
	(1) $h_1(n) * h_2(n)$	(2)	$h_1(n) + h_2(n)$
	(3) $h_1(n) - h_2(n)$		$h_1(n) * [h_1(n) + h_2(n)]$
61)	For a stable LTI discrete time syste should be	m, poles	should lieand unit circle
	(1) Outside unit circle, included in	ROC	
	(2) Inside unit circle, outside of Ro	OC	(1) N + 2 or N (2)
	(3) Inside unit circle, included in F	ROC	
	(4) Outside unit circle, outside of l	ROC	
62)	The discrete time Fourier transform	of the si	ignal, $x(n)=0.5^{(n-1)} u(n-1)$ is,
	(1) $\frac{e^{-j\omega}}{1-0.5e^{-j\omega}}$ (2) $e^{-j\omega}(1-0.5e^{-j\omega})$	$-j\omega$) (3)	$\frac{0.5e^{-j\omega}}{1 - 0.5e^{-j\omega}} \qquad (4) \frac{0.5e^{j\omega}}{1 - 0.5e^{-j\omega}}$
	wied second / L		

63) The characteristic polynomial of a system $q(s)=2s^5+s^4+4s^3+2s^2+2s+1$. The system is

(1) Stable

(2) Marginally stable

(3) Unstable

(4) Oscillatory

						5	04/A
64)	The	system mode des	scribed by this	equation	$X = \begin{bmatrix} 0 & 1 \\ 2 & -3 \end{bmatrix}$	$x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u, y = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$	1 1] <i>x</i>
	is						
	(1)	Controllable and					
	(2)	Controllable but	not observabl	e			
	(3)	Observable but	not controllabl	e			
	(4)	Neither controlla	able nor observ	able		ESENTIAL PROPERTY.	
65)	The	number of switc	hing functions	of 3 vari	ables is	40	
	(1)		2) 64		128	(4) 256	
66)	resu	K Flip flop if we lted flip flop is	input K with	the inverte	e follo (a)	Which of th	J, the
	100	SR flip flop	W. El	(2)	JK flip-flop		
	(3)	D flip flop		(4)	T flip flop		
67)	Hov	w many and what	are the machi	ne cycles	needed for e	execution of I	PUSH
	B?	a Grain alternation		un berd b	n be replace	ek tayıl bak	
	(1)	2, fetch and me	mory write				
	(2)	3, fetch and 2 n	10.5				
	(3)	3, fetch, memor	y write and re	ad			
	(4)	3, fetch and 2 n					
68)	For is	successive appro	ximation with	N output	bits, number	of clocks red	quired
	.(1)	N + 2 or N	(2) 2N + 1	(3)	2 ^N	(4) $2^N - 1$	
69)	The	minimum numb	er of flip-flops	required	in a counter	to count 60 j	pulses
	(1)	4	(2) 6	(3)	8	(4) 10	
70)	Wh	at is the addressi	ng mode used	in instruc	ction LXI BO	0345 H ?	
/	(1)	Direct	8	(2)	Indirect	7-11-1-11P	
	(3)	Indexed		(4)	Immediate		
di , i	4254		sup besteve s	lo Larmo	nalod atteita	The character	
71)		8255 programm					orts
	(1)	2	(2) 3	(3)	4	(4) 6	

72)	Ready signal is used to			
	(1) Synchronize fast periph			
	(2) Synchronize slow perip			
	(3) Send request to microp			
	(4) Send request to microp	rocessor for in	nterrupt subrou	tines
73)	When the reset pin is activat	ed, the progra	m counter is lo	aded with
	(1) 1000H (2) 200	00H (3) 3000Н	(4) 0000H
74)	An 'N' bit Johnson counter	can count	states	(2A expone
	(1) N (2) 2N	(3	N-1	(4) 2N-1
75)	The 2's compliment of the	given number	1011001 is)(I)
	(1) 1011000H (2) 10	11001H (3		
76)	The n-stage register results i	n a delay of	1 3 A 1	
	(1) (n-1) T (2) 2n'	Γ (3	n^2T	(4) nT/2
77)	n-bit variables have 2 ⁿ possicombinations is called	sible combinat	tions and each	of these possible
	(1) Maxterm	(2) Minterm	
	(3) Product of sum	(4) Sum of pro	duct (1)
=0\	octal erim.			
78)	What is the gray code of (10	2		
	(1) 10011 (2) 00	100 (3) 11111 ^E bas	(4) 11011
79)	The 2's complement represe	ntation of the	decimal number	er –4 is
	(1) 1000 (2) 110	00 (3) 1011	(4) 1010
80)			with period T v	vill not converge if
	(1) $ x(t) $ is not finite at all		(24	
	(2) x(t) has more than one		ne period T	
	(3) x(t) is not continuous a			
	(4) x(t) is not a band limit	ed signal		

AN A SEA
81) When the input to an LTI system is a unit step function, the output is
outlied signal. Which of the following inferences is correct?
(1) The system is not necessarily stable
(2) The system is not definitely stable
(3) The system is definitely unstable
(4) None of the above
82) Which of the following signal is an example for deterministic signal?
(1) step (2) ramp
(3) exponential (4) all of the above
83) The Z- transform of a^{-n} u(- n -1) is,
$(1) \frac{-z}{z} \qquad (2) \frac{z}{z} \qquad (3) \frac{z}{z}$
$z-1/a \qquad (2) \qquad z-1/a \qquad (3) \qquad \overline{z-a} \qquad (4) \qquad \overline{z-a}$
84) The ROC of the signal $x(n) = a^n$ for $-5 < n < 5$ is,
(1) entire z-plane
(2) entire z-plane except $z=0$ and $z=\infty$
(3) entire z-plane except z=0
(4) entire z-plane except $z=\infty$
combinations is called
85) If a signal is folded about the origin in time, then its (1) magnitude spectrum undergoes change in signal.
(2) phase spectrum undergoes change in sign
(3) magnitude remains unchanged
(4) both 2 and 3
86) If s ³ +3s ² +4s+A=0, then all the roots of this equation are in the left half plane
provide that
(1) $A > 12$ (2) $-3 < A < 4$ (3) $0 < A < 12$ (4) $5 < A < 12$
87) The gain margin of the system with open loop transfer function $G(s)H(s) = \frac{2(1+s)}{s^2}$ (1) $g(s) = \frac{2(1+s)}{s^2}$
(1) ∞ (2) 0 (3) 1 (4) $-\infty$

16

88)	Th	e Nyanis	et plot of	` o 1 o	on turn C	C	~ ~ ~ ~ ~ ~ ~ ~		50	4/A
701	the	(-1,j0)	point, the	e ga	in margin	of the sys	G(jω)H(j	ω) of a s	ystem encl	oses
			han zero		1 by a		Zero			
	(3)	Greate	er than ze	ro		(4)				
89)	Nu	mber of	NAND	gate	s required	for Ev N	IOD imml			
101 ((1)	4	y nonel	(2)	6	(2)	5	ementati	on	
				(-)		(3)		izsii (4)		
90)	То	impleme	ent n-bit	para	illel adder	requires				
	(1)	n			n – 1		n+1	CO STREET	none	
91)	The	most w	idely use	ed b	ipolar tech	mology fo	or digital	ICs		
	(1)				TTL		ECL	455	None	
92)	Out	put of J	K flip flo	p to	ggles whe	n	Short of			
					J=0, K=1	OO TANK	J=1, K=	1 (4)	=0, K=0	
93)	The	word si	ze of 808	35 m	nicroproces	ssor is				
		4-bit			16-bit		20-bit	(4)	8-bit	
94)	The	octal eq	uivalent	of th	ne decimal	number	375 is			
((1)	560		- 1	567	(3)	565	(4)	none	
95) 1	Fan-	out for the	he 74 ser	ies i	s portug					
	(1)		(2	2) 5		(3)			10 A(10	
96) N	Multi	iplexer c	an be na	med	las					
		Data Sel								
(2)	One to 1	nany Cir	cuit						
(parallel		HOS for W					
(4	4.0	None								

504/A 1 x(t), is $x(t+mT) for$
) for every
x(t+mT) for
x(t+mT) for
lassified as
two signals
e maximum

/iousp	aper	.in
		504
97)	The	fundamental period T of a periodic-continuous time signal $x(t)$, is
	(1)	the smallest positive constant satisfying the relation $x(t) = x(t+mT)$
		every t and any integer m
	(2)	the positive constant satisfying the relation $x(t) = x(t+mT)$ for eve
		and any integer m
	(3)	the largest positive constant satisfying the relation $x(t) = x(t+mT)$ any t and any integer m
	(4)	the smallest positive integer satisfying the relation $x(t) = x(t+mT)$ any t and any m
		CDUDE STr. 1
98)	An	instruction used to set the carry flag in a computer can be classified a
	(1)	Data transfer
	(2)	Arithmetic

- (3) Program control 10 Vaciondos mio
- (4) Logical Instruction
- 99) It is possible to compute the cross-correlation $R_{xy}(\tau)$ between x(t) and y(t) directly from their convolution provided
 - (1) x(t) has even symmetry
 - (2) x(t) has odd symmetry
 - (3) y(t) has odd symmetry
 - (4) y(t) has even symmetry
- 100) The transfer function of a phase lead controller is value of phase provided by this controller
 - 900
- (2) 60°
- (3) 45°
- 101) A random variable is uniformly distributed between 3 and 6. Its variance is (1) 0.75 (2) 0.25 (3) 0.5
- 102) $x(t)=3\cos^2 250\pi t$. This signal is sampled at regular intervals of T seconds. The maximum value of T for which x(t) may be recovered from the sampled version without any distortion, is equal to
 - (1) 1 ms
- (2) 2 ms
- (3) 4 ms (4) 0.5 ms

504				504/4
103) A mes and +2 to	sage signal with V is transmitted	its amplitude by a 4-bit bina	uniformly distrib ry PCM system.	504/A buted between -2 V The (SNR) _q is equal
(1) 2:	56 (2)	1024	(3) 512	(4) 768
104)In a 16	ary PSK, the sy	mbol rate is 10	kbps. The bit ra	te is
				(4) (10/16) kbps
105) For an	ny 4-ary FSK, the	e signal set is g	iven by	
	$S_{c}(t) = \sqrt{2E} \cos \left[\frac{1}{2E} \right]$	$\frac{\pi}{(n+k)\ell}$.	$\leq t \leq T$ k=1,	224
	$s_k(t) = \sqrt{T} \cos \left[\frac{1}{T} \cos $	$\begin{bmatrix} 4^{(n+k)i} \end{bmatrix}$; 0	$\leq t \leq 1$ K=1,	2,3,4
The dir	mension of its sig	gnal space is	militial back of	misses (1) -
(1) 1	(2)	2	(3) 3	(4) 4
106) In the specific	filter method of cations less strin	generation of gent,	SSB-SC, in orde	r to make the filter
	is ensured that	t the modulati	ng signal has i	no high-frequency
	high-frequency o	carrier is used	initially for gene	erating the DSB-SC
(3) on co	aly those modula ontent are used	ting signals wh	ich have high de	and low frequency
(4) a sig	low-frequency c	arrier is used i	nitially for gene	rating the DSB-SC
	currence of doub		icates	
A CONTRACTOR OF THE PARTY OF TH	at the IF is too h			
	at the selectivity			
			he receiver is ina	And the state of t
(4) tha	at the local oscilla	ator frequency is	s less than that of	the incoming signal
108) If in a r	ectangular wave	guide for which	a=2b, the cutoff	f frequency for TE ₀₂
mode is	s 12GHz, the cut	off frequency f	or TM ₁₁ mode is	-02
	GHz (2)	3√5 GHz	(3) 12 GHz	(4) $6\sqrt{5}$ GHz

						504/A
		al field is produ 3, -1), respectiv				nd 4µC located
(1)	2.57mJ		(2)	5.14mJ		
(3)	10.28mJ			None of th	iese	Sarr
		opagates in war Peak magnetic	ter $(\varepsilon_r = 1)$			ectric field is
(1)	1.5 A/m	(2) 5.0 A/m	(3)	10 π A/m	(4)	20 A/m
	e propagating wave is	in +Z direction	n, E is gi	ven E _x =2cos	st E	$y = 2\cos(t + 90^{\circ})$
(1)	Linear polariz	zed				
(2)	right circular	polarized				
(3)	left circular p	olarized		Oxy		
(4)	elliptically po	plarized	TICS !	lo bodes		
medi		EM wave in free 4.5, $\mu_r = 2$ We	ould be		nom	velocity in a
	$2.5 \times 10^6 \text{ m/s}$		(4)			
fre juentry	of bein ab it	Wait daidw	alangia y	ninclubron si	UEB E	
	input impedater wavelengt	nce of short cir	cuited los	ssless line of	fleng	th less than a
(1)	purely resistiv	ve	(2)	purely ind	uctive	ale de la company
(3)	purely capaci	tive	(4)	complex		
a 301 trans	MHz source of mission line in	insmission line in of internal resistation maximum per (2) 1.25m	ance of 50 ower tran	Ω.What sho sfer	uld be	e the length of
115) The	electric field n	neasured in the f	ar field of	f an antenna	at a di	stance of 50m
is 1V		age power densi	ty at a dis	tance of 500		
. (1)	$26.6~\mu W/m^2$	(2) $0.1 \mu \text{W/r}$			(4)	$13.3 \ \mu W/m^2$
			20			

504/A			504/A					
	s a random variable with variant is	nce σ_x^2 . Th	be variance of $(X + a)$ where a is a					
(1)	$(\sigma_x + a)^2$ (2) σ_x^2	(3)	$(\sigma_x^2 + a^2)$ (4) $(\sigma_x^2 - a^2)$					
117)Tw furt	o random processes X and Ya her one of them has zero me	re such tha an. The pro	$t R_{XY}(t_1,t_2)=0$ for all t_1 and t_2 and occases are					
(1)								
(2)								
(3)								
(4)	Orthogonal and uncorrelate	d	on assessed 2.0					
	to-correlation function $R_X(\tau)$ of	of a stationa	ary process X(t) is					
	(1) a deterministic function with maximum value at $\tau=0$							
	(2) a deterministic function which is periodic							
(3)			average pyoke the me					
(4)	a periodic stationary process	2 713	balgarusup (1)					
119)In t	he mid-tread type of quantize	er, any inp	ut value lying between -0.5 to					
+0	5 is mapped into an output va	alue of						
	0.5	(2)						
(3)	-0.5 SILL 1 ± (2)	(4)	(1) ± 250 Hz 0					
120)One for	e of the following bandpass of transmission over nonlinear b	ligital mod	ulation schemes is not suitable					
(1)	FSK	(2)	ASK MAN MAN MICKEL					
(3)	PSK	(4)	QFSK of or bendance 2					
121) For	M-ary PSK systems, the be	st trade-off	between bandwidth efficiency					
and	transmitted power is given fo	r a value o	of M equal to					
(1)			4 g flianger son History					
(3)	d frequency mage will 8	(4)	16'00 of an oldene (4)					
122) Mut	and information $I(X; Y)$ between	en two dis	crete random variables X and Y					
(1)	H(X) + H(Y) - H(X,Y)		to (Impuls anglestings (170					
(2)	H(V) H(V V)							
(3)	$H(V) = H(V \mid V)$							
(4)	H(Y) + H(Y) + H(Y Y)							

123) An amplitude modulated wave is given by

 $x_{o}(t)=10 \cos 1200\pi t + 40 \cos 1400\pi t + 10 \cos 1600\pi t$

The modulating signal frequency and modulation index are

(1) 200 Hz, 0.5

(2) 400 Hz,0.25

(3) 200 Hz, 0.25

(4) 400 Hz,0.5

124) When sinusoidally modulated, the r.m.s. value of the current in the antenna of an AM transmitter increases 15% over its unmodulated value. The modulation index is

(1) 0.6

(2) 0.8

(3) 0.5

(4) 0.707

125) For a frequency-modulated signal, the modulation index is doubled. The average power of the modulated signal is

(1) quadrupled

(2) doubled

(3) unaltered

(4) none of these

126) A narrow band FM signal is generated using a phase modulator. The maximum deviation at the output of a phase modulator is about

(1) $\pm 250 \text{ Hz}$

 $(2) \pm 1 \text{ kHz}$

 $(3) \pm 1 \text{ MHz}$

 $(4) \pm 25 \text{ Hz}$

127) In an AM broadcast superheterodyne receiver, the local oscillator frequency is arranged to be higher than the incoming signal frequency in order to

- (1) provide better image rejection
- (2) make tracking easier
 - (3) produce the correct intermediate frequency, since a lower LO frequency will not permit generation of correct IF
 - (4) enable us to cover the required frequency range with the practically possible ratio of maximum to minimum values of the variable capacitors

128) At the output of the discriminator in a FM receiver, the PSD of the noise

- (1) increases linearly with frequency
- (2) decreases as the square of the frequency
- (3) increases as the square of the frequency
- (4) decreases linearly with frequency

129) 'Pre-emphasis' is

- (1) boosting up of the high -frequency components of the message signal after detection in the receiver
- (2) boosting up of the high- frequency components of the message signal at the transmitter before the modulation
- (3) boosting up of the low-frequency components of the message signal after detection in the receiver
- (4) boosting up of the low- frequency components of the message signal at the transmitter before the modulation
- 130) What is the major factor for determining whether a medium is free space, lossless dielectric, lossy dielectric, or good conductor?
 - (1) Attenuation constant
 - (2) Constitutive parameters $(\sigma, \varepsilon, \mu)$
 - (3) Loss tangent
 - (4) Reflection coefficient
- 131) For a lossy transmission line, the characteristic impedance does not depend on
 - (1) The operating frequency of the line
 - (2) The length of the line
 - (3) The load terminating the line
 - (4) both 2 and 3
- 132) At microwave frequencies, we prefer waveguides to transmission lines for transporting EM energy because of all the following except that
 - (1) Losses in transmission lines are prohibitively large
 - (2) Waveguides have larger bandwidths and lower signal attenuation
 - (3) Transmission lines are larger than waveguides (3)
 - (4) Transmission lines support only TEM mode

Neither directivity nor bandwidth

133) When the electric field is at its ma	504/A eximum value, the magnetic energy of a						
The fall of the second							
(1) At its maximum value							
(2) At $\sqrt{2}$ of its maximum value	C1 d(i) Uz (i 28)						
(3) At 1/2 of its maximum value							
(4) Zero	at the transminer desore the n						
ency components of the message signal							
134) Given field $A=3x^2yza_x + x^3za_y + x^3z$	$y - 2za_a$, it can be said that A is						
(1) Conservative condensed your	(4) bookings up of the low-frequ						
(2) Divergenceless dollar bot	at the vansnamer before the n						
(3) Solenoidal	15 (ch 17)7						
(4) Rotational	130) What is the runio						
	Sheet and an anatolist was tradi						
135) The divergence of vector $\overline{A} = [yz\overline{a}_x + zx\overline{a}_y + xy\overline{a}_z]$ is							
(1) rotational	(2) irrotational						
(3) solenoidal	(4) both 2 & 3						
	(3) Loss langent						
136) For the vectors $\overline{A} = x\overline{a}_x + y\overline{a}_y$ and $\overline{B} = x\overline{a}_x + y\overline{a}_y$	$= z\overline{a}_z.so\nabla.(A \times B)$ is						
(1) xz (2) 0	(3) 1 (4) yz						
naracterists (Sylances less not descend	131) For a lovey transmission line, the ch						
137) For free space $E = 50 \cos (10^8 t + \beta)$							
(1) 0.333 rad/m	(2) 2/3						
(3) 4/3	(4) 0.316						
138) The radiation pattern of loop antenna	o io it and another interest bard off" (f)						
(1) cardiod	(2) semi-circle						
(3) circle	(4) none of these						
with their parties we memesson of	(4) Hone of these						
139) A Half wave dipole at a frequency of 100 MHz has a length of							
	(3) 1.5m (4) 0.75						
	(h) Losses in transmission lines an						
140) Multiple number of antennas are ar							
(1) Both directivity and bandwidth							
(2) Only directivity	(3) Lausanission lines are larger ti						
(3) Only bandwidth							
(4) Neither directivity nor bandwid							

504/A

141) The variance σ^2 of a random variable X is given by

(1) $E[X^2]$

(2) $\{E[X]\}^2$

(3) $E[X^2] - \{E[X]\}^2$

(4) $E[X^2] + \{E[X]\}^2$

142) In a linear DM system,

- (1) only granular noise will be present
- (2) only slope overload noise will be present
- (3) both granular noise and slope overload noise can be eliminated
- (4) granular noise will be present but slope overload noise can be avoided by proper design

143)P for a DPSK system is

(1)
$$\exp\left[-\frac{Eb}{\eta}\right]$$

(2)
$$\exp\left[-\sqrt{\frac{Eb}{\eta}}\right]$$

(3)
$$\frac{1}{2} \exp \left[-\frac{Eb}{\eta} \right]$$

(4)
$$\frac{1}{2} \exp \left[\frac{Eb}{\eta} \right]$$

144) The Foster-Seeley discriminator responds to the input FM signal's

- (1) amplitude variations only
- (2) amplitude as well as frequency variations
- (3) frequency variations only
- (4) variations neither in amplitude nor in frequency

145) A superheterodyne AM broadcast receiver has an IF of 455 kHz. If it is tuned to a frequency of 700 kHz, the image frequency is

25

(1) 1610 kHz

(2) 1155 kHz

(3) 245 kHz

(4) 210 kHz

146) Which is not an example of convection current?

- (1) A moving charged belt
- (2) Electronic movement in a vacuum tube
- (3) An electron beam in a television tube
- (4) Electric current flowing in a copper wire

					504/A			
	value of electric faity 1 c/m is	field at a distance	of 1	m from an in	finite line charge			
(1)	2πε		(2)	$1/2\pi\epsilon_0$				
	$\varepsilon_0/2\pi$		(4)	$2\pi/\epsilon_0$				
	ine terminated		erist	cic impedance	ce has a SWR			
of								
(1)	infinity		(2)	unity	Selember			
(3)	zero		(4)	two				
					1830 n 7-			
	ich one of the foll angular waveguide		the	highest cut-of	f wavelength in a			
(1)	TE ₁₀		(2)	TE _a ,				
(3)	TM_{01}		(4)	TM_{11}^{01}				
(3)	01		5	11111	dear Harri			
150)In e	nd fire array the pr	rincipal direction o	f rad	iation				
(1)	Is perpendicular to the array axis							
(2)	Is perpendicular to the array axis and also to the plane containing the array elements							
(3)	Coincides with the direction of the array axis							
	Is at 45 degrees to the direction of array axis.							
(4)	is at 45 degrees	to the direction of	allay	y axis.				