ME1315

CIVIL ENGINEERING Paper - 2

Series

Sl.No. 210341

Duration: 150 Minutes

Max. Marks: 300

INSTRUCTIONS TO CANDIDATES

- 1. Please check the Test Booklet immediately on opening and ensure that it contains all the 150 multiple choice questions printed on it.
- 2. Separate Optical Mark Reader (OMR) Answer Sheet is supplied to you along with the Question Paper Booklet. The OMR Answer sheet consists of two copies i.e., the Original Copy (Top Sheet) and Duplicate Copy (Bottom Sheet). The OMR sheet contains Registered Number/Hall Ticket Number, Subject/Subject Code, Booklet Series, Name of the Examination Centre, Signature of the Candidate and Invigilator etc.,
- 3. If there is any defect in the Question Paper Booklet or OMR answer sheet, please ask the invigilator for replacement.
- 4. Since the answer sheets are to be scanned (valued) with Optical Mark Scanner system, the candidates have to USE BALL POINT PEN (BLUE/BLACK) ONLY for filling the relevant blocks in the OMR Sheet including bubbling the answers. Bubbling with Pencil / Ink Pen Gel Pen is not permitted in the examination.
- 5. The Test Booklet is printed in four (4) Series, viz. A or B or C or D. The Series A or B or C or D is printed on the right-hand corner of the cover page of the Test Booklet. Mark your Test Booklet Series in Part C on side 1 of the Answer Sheet by darkening the appropriate circle with Blue/Black Ball point pen.

Example to fill up the Booklet series

If your test Booklet Series is A, please fill as shown below:

[P.T.O.

					501/A
1)	If θ be the angle of slope and the le to be applied per chain length is	ngth o	f chain is 30n	n, then	the correction
	(1) 30 (1- $\sec \theta$) m	(2)	30 (1 - cos 6	e) m	
-	(3) 30 (sec θ -1) m	1	30 (cos 0 - 1		
2)	Which one of the following angles cross staff?	can b	e set out with	h the h	elp of French
	(1) 180° (2) 90°	(3)	45°	(4)	any angle
3)	A lamp at the top of a light house station at sea level, the distance of the height of the light house.				
	(1) 2.019 m (2) 0.57 m	(3)	20.19 m	(4)	6.057 m
4)	The line Joining points of equal dip (1) Isoclinic lines (2) Aclinic lin			es (4)	Agonic lines
5)	If the forebearing of a line AB is included angle between the lines is	50° a	nd that of line	BC is	20°, then the
	(1) 70° (2) 120°	(3)	220°	(4)	150°
6)	When contours of different elevation	ns cro	ss each other,	it indic	cates
	(1) Level surface	(2)	Overhanging	cliff	
	(3) Saddle	(4)	Vertical cliff		
7)	In theodolite survey, the telescope i				
	(1) Vertical circle is to the right of the	ne obse	erver and the b	ubble o	f the telescope
	(2) Vertical circle is to the right of the	ne obse	erver and the b	ubble o	f the telescope
	(3) Vertical circle is to the left of the is up	ne obse	erver and the bi	ubble o	f the telescope
	(4) Vertical circle is to the left of the is down	ne obse	erver and the bi	ubble o	f the telescope
8)	In Geographic information system, l	ine in	A STATE OF THE STA	3	aracteristic of
	(1) Buffer operation	(2)	Raster overla		
	(3) Intersecting operation	(4)	Vector overla	ay	
		5			[P.T.O.
			5.		

9)	If the RL of a BM is 100m, the back s 1.670m, the RL of the forward station is	sight is 1.415m and the foresight is
	(1) 101.670m (2) 101.415m (3	
10)) In functional classification of highways, type have highest mobility and less acc	which one of the following highway
	(1) National Highways (2) State Highways
	(3) Major District roads (4	
4.4		
11)	Webster's equation for computing saturation flow rate PCU/hour; W = carr	ration flow rate in signal design (S=
) S= 525 W PCU/hour
		S = 250 W PCU/hour
12)	For the coloulation of stancing list	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
12)	For the calculation of stopping distance,	the longitudinal friction co-efficient
	values of have been recommended	ed by Indian Roads Congress.
	(1) 0.35 to 0.40 (2) 0.15 to 0.20 (3)	0.40 to 0.45 (4) 0.45 to 0.50
13)	by the eyes/ears to be transmitted to the bespinal chord is called	e required for the sensations received brain through the nervous system and
	(1) Intellection time (2)) Emotion time
	(3) Volition time (4	
14)	Calculate the value of lag distance in SS of 65 kmph?	
	(1) 45.18 m (2) 36.14 m (3)) 32.50 m (4) 451.80 m
15)	The psychological widening of pavement	t is calculated using which one of the
	following formula (take V= speed of veh in m)	icle in kmph; R = radius of the curve
	(1) $\frac{V^2}{9.5\sqrt{R}}$ (2) $\frac{V}{9.5\sqrt{R}}$ (3)	$\frac{V}{9.5R} \qquad (4) \frac{V^3}{9.5R^2}$
16)	Find out the rate of change of centrifuga 75 kmph, using IRC recommended form	al acceleration for a design speed of
	(1) 0.63 m/sec^3 (2) 0.53 m/sec^3 (3)	

17)	Estimate the theoretical capacity of a traffic lane with traffic flow stream speed of 50 kmph (take average centre to centre spacing of vehicles as 10 m)
	(1) 500 vehicles /hour/lane (2) 5000 vehicles /hour/lane
	(3) 3000 vehicles /hour/lane (4) 300 vehicles /hour/lane
18)	In a flexible pavement, the different materials with the CBR values are available as follows: 80%, 60%, 15% and 4%. Indicate the order (top to bottom) in which the materials are to be placed for making a good pavement (1) 4%, 15%, 60%, 80% (2) 4%, 60%, 80%, 15% (3) 80%, 60%, 15%, 4%. (4) 4%, 80%, 15%, 60%
19)	Calculate the Equivalent Axle load factor (EALF) for single axle load of 10 tons using fourth power formula.
	(1) 2.26 (2) 22.60 (3) 1.23 (4) 11.23
20)	The hardness and toughness properties of a road aggregate will be obtained from
	(1) Aggregate Impact Test (2) Aggregate crushing test (3) Los Angeles Abrasion Test (4) Aggregate Shape test
21)	In the rigid pavement fatigue analysis, the ratio of flexural stress due to load
noite	and the flexural strength due to concrete is less than 0.45 indicates
	(1) the allowable number of repetitions of the axle loads is infinity
	(2) the allowable number of repetitions of the axle loads is zero
	 (3) the allowable number of repetitions of the axle loads is 4500 (4) the allowable number of repetitions of the axle loads is 45000
	(4) the anowable number of repetitions of the axic loads is 45000
22)	The gauge widths (in meter) for broad, standard and narrow gauges respectively are
	(1) 1.767, 1.650 and 0.760 (2) 1.676, 1.500 and 0.676
	(3) 1.676, 1.435 and 0.762 (4) 1.876, 1.656 and 0.800
23)	For airports serving big aircrafts, ICAO recommends the cross wind component should not exceed
	(1) 25 kmph (2) 35 kmph (3) 15 kmph (4) 23 kmph
4.2	
24)	The monthly mean of average daily temperature for the hottest month of the year is 30°C and the monthly mean of the maximum daily temperature for the same month of the year is 45°C, Find out the airport reference temperature (1) 25°C (2) 35°C (3) 40°C (4) 15°C
	7 P.T.O.

25) The minimum value of Composite Sleeper Index (CSI) prescribed on Indian railways for track sleeper is (1) 783 (2) 1352 (3) 1455 (4) 873 26) The formula used for calculation of superelevation on railways is (take G = gauge in meters, V = Speed in kmph; R= radius of curve in meters) (1) $\frac{GV^2}{127R} m$ (2) $\frac{GV^2}{127R} cm$ (3) $\frac{GV^3}{127R} m$ (4) $\frac{GV^2}{225R} m$ 27) Cornice and coping is measured in (1) Running meter & Square meter (2) Running meter & Running meter (3) Square meter & Square meter (4) Square meter & Running meter 28) In Simpson's formula for areas calculation, the line joining the top of the ordinates is considered as (1) elliptical (2) circular (3) parabolic (4) straight 29) To obtain the correct volume using the trapezoidal rule, the prismoidal correction should always be (3) Subtracted (1) Multiplied (2) Added (4) Zero 30) In earth work excavation, normally lead and lift is considered for preparation of road estimate (2) 20 m and 1.5 m (1) 30 m and 1.5 m (3) 20 m and 2.0 m (4) 30 m and 2.0 m 31) The unconfined compressive strength of a clay in un-disturbed and disturbed state was found to be 180 kN/sqm and 10 kN/sqm respectively. Based on Sensitivity, the soil may be classified as: (1) In-sensitive (2) Sensitive (3) Quick Clays (4) Extra Sensitive Clays 32) If R₁ and R₂ are the radii of curvature of a non-uniform meniscus in two orthogonal planes, the capillary rise is given by: (1) $h_c = (\sigma / Y_W) \{R_1 + R_2\}$ (2) $h_c = (\sigma / Y_W) \{(1/R_1) + (1/R_2)\}$ (3) $h_c = (\sigma / Y_W) \{R_1 \times R_2\}$ (4) $h_c = (\sigma / Y_W) \{R_1 / R_2\}$

33) The coefficient of permeability of a soil sample having its void ratio as 0.50 and co-efficient of percolation as 3.00 × 10⁻⁴ cm/s is:

(1) 3.00×10^{-4} cm/s (2) 1.50×10^{-4} cm/s

(3) $6.00 \times 10^{-4} \text{ cm/s}$ (4) $1.00 \times 10^{-4} \text{ cm/s}$

0.0.71

	501/A
34)	In a Laboratory, to perform IS Heavy Compaction Test, it was required to use a mould of 1400 cc capacity in place of standard 1000 cc capacity mould. All other parameters remaining same, the number of blows to be applied per layer to ensure the designated compaction energy is: (1) 56 (2) 25 (3) 35 (4) 50
35)	with single drainage was estimated as 96 mm. Later it was found that, the medium has double drainage. Then, the magnitude of total primary consolidation settlement will be:
	(1) 48 mm (2) 192 mm (3) 384 mm (4) 96 mm
36)	The shear strength of a pure clay specimen when tested in Unconfined compression Test was found to be 100 kPa. If the same specimen was tested in Tri-axial Compression Test, the deviatoric stress at which specimen will undergo failure when the confining stress was 50 kPa, will be: (1) 50 kPa (2) 100 kPa (3) 200 kPa (4) 400 kPa
37)	A 3 m high retaining wall with vertical face is resisting a moist back fill with horizontal top surface having $Y=20 \text{ kN/cum}$. The percentage increase in Total Active Earth Pressure, if the back fill gets submerged with $Y_{\text{sat}}=22 \text{ kN/cum}$ and $Y_{\text{w}}=10 \text{ kN/cum}$, is:
	(1) 20 (2) 40 (3) 60 (4) 100
38)	The factor of safety of a slope of given inclination of 6 m high constructed using a soil with c=60 kPa, y=20 kN/cum and its Taylor's stability number=0.20, will be: (1) 2.50 (2) 5.00 (3) 1.00 (4) 2.00
	(I) FL-T (2) MI-TH (3) FFT-S
39)	According to Boussinesque's theory, under the application of a point load of 100 kN on the surface, the pressure bulb corresponding to an increment in vertical stress of 47.75 kN/sqm will extend to a depth of:
	(1) 0.50 m (2) 1.00 m (3) 2.00 m (4) 4.00 m
40)	The ultimate bearing capacity of a shallow foundation laid on a cohesion-less soil medium was estimated as 200 kN/sqm, when the water table was far below All other conditions remaining the same, the ultimate bearing capacity

of the foundation, when the water table was risen to ground level, is:
(1) 400 kN/sqm (2) 200 kN/sqm (3) 100 kN/sqm (4) 50 kN/sqm

	501/4
41)	The observations of a Standard Penetration Test are reported as 10/15/20 Assuming correction for overburden is not required and correction for dialatancy only is required, the corrected N-value is:
	(1) 45 (2) 35 (3) 25 (4) 15
42)	situ circular pile is estimated as 100 kN. All other parameters remaining the same, the capacity of the Pile if the diameter is doubled, is: (1) 100 kN (2) 200 kN (3) 300 kN (4) 400 kN
43)	Which of the following type of Piles is more appropriate as foundation of structures constructed on Expansive Clays:
bet ted	(1) Batter Piles (2) Sheet Piles (3) Under-reamed Piles (4) Compaction Piles
44)	The type of Caissons preferred in sites where high upward seepage exists, is (1) Pneumatic Caissons (2) Open Caissons (3) Box Caissons (4) Open caissons and Box caissons
45)	Coffer Dams are: (1) Permanent structures meant for storage of water (2) Structures built across drains to act as check dams (3) Temporary structures build to reserve water in side to cure foundation
	concrete (4) Temporary structures build to reserve water outside to facilitate construction of foundation
46)	The dimensions for Kinematic Viscosity is (1) $FL^{-2}T$ (2) $ML^{-1}T^{-1}$ (3) $L^{2}T^{-2}$ (4) $L^{2}T^{-1}$
47)	The stream function for a potential flow field is given by $\psi=x^2-y^2$, the corresponding potential function (Φ) , assuming zero potential at the origin is (1) x^2+y^2 (2) $2xy$ (3) x^2-y^2 (4) $x-y$
48)	Water flows through a large size pipe. The stagnation pressure and static pressures measured by a pitot tube are 0.3m and 0.24m of water. The velocity of flow in, m/minute is
** TBI	(1) 1.08 (2) 65.00 (3) 10.8 (4) 0.65

49)	9) A rectangular channel has a width of 1.8m and carrie	s a discharge of 1.8m ³ /
•	sec at a depth of 0.20m. The specific energy is (1) 1.03m (2) 1.47m (3) 1.87m	(4) 2.0m
50)	of 92.8cm and standard deviation of the rainfall is gauge stations is 30.7cm. For a 10% degree of error mean rainfall, the optimum number of stations require (1) 5 nos (2) 6 nos (3) 10 nos	recorded in these rain in the measurement of ed is
51)	1) The area between the two isohyets 45cm and 55cm is 1 55cm and 65cm is 150km ² . What is the average depth over the basin of 250km ²	
	(1) 50cm (2) 52cm (3) 56cm	(4) 60cm
52)	2) The total observed runoff volume during a 4hr storm	with a uniform intensity
la sou	of 2.8cm/hr is 25.2×106 m3 from a basin of 280 km2 at	
	infiltration rate for the basin	
	(1) 3.6mm/hr (2) 4.8mm/hr (3) 5.2mm/hr	(4) 5.5mm/hr
53)	aquifer, uniformly over an area of 5km ² . The pumping from initial level of 102m to 99m. The specific yield (1) 0.20 (2) 0.30 (3) 0.40	lowered the water table
E4)	54) A hyetograph is a plot of	
54)		ntensity Vs time
	(3.) Rainfall depth Vs duration (4) Discharge	
	(3.) Raintain depth vs duration (4) Discharge	o v o timio
55)	55) The unit of intrinsic permeability is	
33)	(1) cm/day (2) m/day (3) Darcy/da	v (4) cm^2
	(1) childay (2) hilday (3) Early and	(.)
56)	56) If $S_y = \text{specific yield and } S_r = \text{specific retention then}$	
	(1) $S_1+S_2 = \text{void ratio}$ (2) $S_2+S_3 = S_3$	orosity
	(3) $S_y^y + S_r^1 = 1.0$ (4) $S_y^y + S_r = T$	permeability
57)	57) If duty (D) is 1428 hectare/cumec and base period (B) is 120 days for an
	irrigated crop, then delta (Δ) in metres is given by	(4) 0 01
	(1) 102.8 (2) 0.73 (3) 1.38	(4) 0.01
4	. 11	[P.T.O.

58) Which one of the following equations represents the downstream profile of Ogee spillway with vertical upstream face? (X, Y) are the coordinates of the point on the downstream profile with origin at the crest of the spillway and H_d is the design head.

(1) Y/H = $-0.5(X/H_d)^{1.85}$ (2) Y/H_d = $-0.5(X/H_d)^{1/185}$ (3) Y/H_d = $-2.0(X/H_d)$ (4) Y/H_d = $-2.0(X/H_d)^{1/185}$

59) For no tension to develop in the gravity dam the eccentricity 'e' of the resultant force should be

(1) Less than b/3

(2) Less than b/6

(3) Less than b/

(4) Less than b/12

60) Lacey's equations can be used for the design of

(1) Unlined channels only

(2) Lined channels only

(3) Both lined and unlined channels (4) Neither lined nor unlined channels

61) Syphon aqueduct is a cross drainage work provided to carry canal over a natural drain when

(1) Canal bed is well above the HFL of the natural drain

(2) Canal bed is at the same level as the bed of the natural drain

(3) Canal bed is below the HFL of the natural drain

(4) Canal bed is below bed of the natural drain

62) Poise is the CGS unit of

(1) Kinematic viscosity

(2) Dynamic viscosity

(3) Mass Density

(4) Weight Density

63) The velocity gradient is 1000/s. The viscosity is 1.2×10⁻⁴ N-s/m². The shear stress is

(1) 0.12N/m^2 (2) $1.2\times10^{-7}\text{ N/m}^2$ (3) 12N/m^2 (4) $12\times10^{-5}\text{ N/m}^2$

64) If Z is measured vertically upwards, dp is given by

(1) dp = ydz (2) $dp = \rho dz$ (3) dp = -ydz (4) $dp = -\rho Dz$

65) If $\psi = 3x^2y - y^3$, the values of u and v are

(1) $6xy, 3x^2-3y^2$

(2) 3x²-3y², 6xy (4) 3y²-3x², 6xy

 $(3) (3x^2-3y^2), -6xy$

66) In a three dimensional motion of a fluid, the component of rotation about the x-axis, w is

 $(1) \quad \frac{1}{2} \left(\frac{\partial w}{\partial y} - \frac{\partial v}{\partial z} \right) \quad (2) \quad \frac{1}{2} \left(\frac{\partial u}{\partial z} - \frac{\partial w}{\partial y} \right) \quad (3) \quad \frac{1}{2} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) \quad (4) \quad \frac{1}{2} \left(\frac{\partial v}{\partial x} - \frac{\partial w}{\partial y} \right)$

77)	A sedimentation to of water. The surf					is trea	iting 2MLD
	(1) 858		926		1028	(4)	748
78)	The efficiency of a not depend upon		ent removal in	a con	tinuous sedime	entatio	n tank does
	(1) Discharge th	-	ne tank	(2)	Width of the	tank	
	(3) Length of the	e tank		(4)	Depth of the	tank.	
79)	The disinfection e			wate	er treatment		
	(1) Is not depend (3) Remains cons		o ^H value all p ^H values		Is increased by Is reduced by i		
80)	A 2% solution of 20°C. If initial DC 8.5 ing/lit and 5.5	and find mg/lit r	nal DO values espectively, the	after	5 days of incu		
	(1) 50mg/lit	(2)	150mg/lit	(3)	250mg/lit	(4)	350mg/lit
81)	If total hardness of will be equal to		less than its tota				ate hardness
	 Total alkalini Total alkalini 		al hardness	(2) (4)	Total hardness Zero	SS	
82)	If for diluting 25m added to make the Number (FTN) w	water s					
	(1) 6	(2)	7	(3)	8	(4)	9
83)	(3) The elevatio	c sum c c sum c n of hyc	of discharges and the discharges and the discharge are replaced by	aroun ne is a	d each circuit assumed for ea	is zero	
84)	(1) Environment(2) Environment(3) Environment	tal lapse tal lapse tal lapse	nts in atmospherate is greater erate is less that erate is equal to epth is equal to	than in adi o adia	adiabatic lapse abatic lapse ra	e rate	

	501/A
	Which one of the following pollutant (or) pairs of pollutants is formed due to
The	photochemical reactions (1) CO alone (2) O ₃ and PAN (3) PAN and NH ₃ (4) NH ₃ and CO
86)	discharge of 10 cumecs and DO equal to 9.1mg/lt, the resultant DO of the mix will be equal to
	(1) 5mg/lt (2) 6mg/lt (3) 7mg/lt (4) 8mg/lt
87)	The natural process under which the flowing river gets cleaned is known as (1) Oxidation (2) Photosynthesis (3) Reduction (4) Self-purification
88)	Recirculation in activated sludge process is done to (1) Dilute the incoming sewage (2) Dampen the effect of the flow variation (3) Operate the plant continuously (4) Supply seed materials to the aeration tank
89)	Lower Food to Micro-organism (F/M) ratio in a conventional activated treatment plant will mean (1) Lower BOD removal (3) No effect on BOD removal (4) Medium BOD removal
90)	The relative stability of a sewage sample whose dissolved oxygen levels equals the total oxygen required to satisfy its BOD is
	(1) Zero (2) 1% (3) 100% (4) Infinity
91)	A rectangular box made with thin uniform plate measures 2000mm x 1000mm x 1000mm. When the box is subjected to certain internal pressure, the dimensions in respective directions have changed by $+2.0$ mm, -1 mm and $+1$ mm. The change in the volume of the box is (1) 2.0×10^6 mm³ (2) 1.0×10^6 mm³ (3) 2.0×10^3 mm³ (4) 2.0×10^5 mm³
92)	A rectangular section of a beam is acted upon by certain amounts of shear force and bending moment. Whereas the shear stress varies, the variation of bending stress is along the depth. (1) linear with zero value at centroid, linear with zero value at centroid (2) parabolic with zero value at centroid, linear with zero value at centroid. (3) parabolic, with zero value at top & bottom, linear with zero value at middle. (4) linear with zero value at centroid, parabolic with zero value at top & bottom.

- 93) A simply supported beam of span L, carries a UVL with intensity varying from w/unit downward at left support to w/unit upward at right support. The reactions at left and right supports are respectively:
 - (1) wL/4 upward and wL/4 downward
 - (2) wL/4 downward and wL/4 upward
 - (3) wL/6 upward and wL/6 downward
 - (4) wL/8 upward and wL/8 downward
- 94) A cantilever beam of span L, uniform flexural rigidity EI is subjected to a unit couple at its free end. The deflection at the centre of the beam is:
 - (1) $L^{2}/2EI$
- (2) $L^{2}/8EI$
- (3) $L^{2}/4EI$
- 95) For the L bent shown in Fig. 1, the flexural rigidity of both arms AB and BC is El carries a vertical downward load W at C. The deflection and rotation at B (neglecting axial deformations) are

- (1) $WL^2/2EI \rightarrow WL/EI$
- Fig.1
- (2) 2WL³/EI↓,WL²/3EI

(3) WL³/EI↓,WL²/EI

- (4) $WL^2/2EI \rightarrow WL^2/EI$
- 96) A simply supported beam of span L, carries two couples of magnitude M each acting at both middle third locations of the beam. While one of them is acting clockwise the other is acting counter clockwise. Magnitude of the maximum shear force acting in the beam
 - (1) 2M/L (2) M/L
- (3) 1.5M/L 4) 0
- 97) The plane truss shown in Fig.2 carries a point load W and a moment M at the location B. Force carried by member AB is

- (1) 5W/6 (compressive) (2) W/2 (compressive)
- - (3) 5W/6 + M/L (compressive) (4) W/2 M/2 (compressive)

98)		alysis of truss			the follow	ving assur	mptions.	501/A The correct
	(i)	All loads act			l to maio			
	(ii)	All joints are			less pin jo	ints.		
	(iii)	Truss is mad			- 1		s elastic an	d isotropic
	(iv)	The axis of a						4 1 1 1 1 1 1 1 1 1
	(1)	i, ii and iv	(2)	i, ii, iii	(3)	i, iv	(4)	i, iii, iv
	AS IDE	ulually action	m oyu	ni sagari	a legranda a	ic medium	usero or in	103) At a po
99)	The	correct comb	ination	of conditi	ions that d	efines a ri	gid joint is	NAVI JOSE D
	i)	All members					SAIM UCT	SHIZE I
	ii)	All deflection					01	Wire Wanere
	iii)	All members			familiasin ext. rl		efections at	that joint.
	iv)	All members				formed to reduct to the	A SA A SA	dead to the state of the state of the
	(1)	i, ii	(2)	i, iii	(3)	ii, iv	(4)	iii, iv
				18 more a		GY		is familier o
	axia	al deformation						A Corp.
			ulpale	Entra Es	mada lo ne			
			and lo	TOLY HELD	di and			
		renelodenes 77		Fig.3				
		dichalade	10	rig.5				
		LK V			(3)			
	(1)	6	(2)	11 0 190	(3)	8	(4)	901 A(001
	adol	of the						
101		he moment dis or for a membe						distribution conditions.
	i)	The slendern	iess rat	io of all th	e members	s meeting	at the joint	point load \$
	ii)	The flexural	rigidity	of all the	members 1	meeting at	the joint.	
	iii)	The I/L value					Jane Land III	
	iv)	Support con			and the second second	the same of the later of the		at the joint.
	(1)	ii, iii	(2)	i, iii	(3)	iii, iv	(4)	i, iv
			AL A			63V 3 . 8	WYS .	

102) A cantilever beam of uniform flexural rigidity with span L and depth D is
subjected to temperatures T ₁ on the upper face and T ₂ on the lower face. If
$T_1 < T_2$ and α is the coefficient of linear expansion for the material, the deflection at the free end of the beam is
(1) $\alpha (T_2 - T_1) L^2 / 2D$ (upward) (2) $\alpha (T_2 - T_1) L^2 / D$ (upward) (3) $\alpha (T_2 - T_1) L / 2D$ (upward) (4) $\alpha (T_2 - T_1) L^2 / 2D$ (downward)
(3) $\alpha (T_2 - T_1) L /2D$ (upward) (4) $\alpha (T_2 - T_1) L^2 /2D$ (downward)
103) At a point in elastic medium normal stresses in two mutually perpendicular
directions are 120 MPa, 40 MPa (both tensile) associated with a tangential
stress of 30 MPa. The principal stresses at the location are
(1) 120 MPa, 40 MPa (both tensile)
(2) 130 MPa, 30 MPa (both tensile)
(3) 130 MPa, 30 MPa (both compressive)
(4) 130 MPa (tensile), 30 MPa (compressive)
The state of the s
104) A weight W falls freely on a body from a height of h. If the instantaneous
deformation of the body in the direction of weight is δ , the work done by the
force is
(1) $\frac{1}{2}$ W (h + δ) (2) W (h + δ)
(3) $\frac{1}{2}$ W h + W δ . (4) W h + $\frac{1}{2}$ W δ
105) In a hearn where the variation of shoor force is a second 1
105) In a beam, where the variation of shear force is a second degree parabola and the variation of loading is, the variation of bending moment is
(1) constant, cubic parabola (2) linear, square parabola
(3) cubic parabola, square parabola (4) linear, cubic parabola
106) A force of magnitude 5 N moves through a distance of 4mm in a direction,
inclined at 60° to the direction of force. The magnitude of the work done by
the force is
(1) 10√3 N.mm (2) 0 N.mm (3) 10 N.mm (4) 20 N.mm
107) The shear centre for an angle section is located
(1) at the tip of the flange (2) at the intersection of flanges
(3) at the centroid of the angle (4) at the rigidity centre of the angle
the angle

not coincide with the centroidal axis of the beam, the member is subjected to
(1) axial force, shear force and bending moment
(2) torque, shear force
(3) torque, shear force and bending moment
(4) axial force, shear force and torque
109) The stiffness of a close coiled spring is more when
(1) wire diameter, rigidity modulus are more and mean radius, number of turns are lesser
(2) number of turns, rigidity modulus are more and mean radius, wire diameter are lesser
(3) mean radius, rigidity modulus are more and wire diameter, number of
turns are lesser
(4) rigidity modulus is more and wire diameter, mean radius, number of
turns are lesser
110) A pressure vessel in the form of a thin cylinder of 1m diameter and 1mm plate thickness is subjected to an internal fluid pressure of 0.2 MPa. The maximum shear stress in the material is
(1) 50 MPa (2) 0 MPa (3) 25 MPa (4) 37.5 MPa
 111) Two circular shafts of same length, weight and material are compared for strength. The first one is a solid shaft and the other is a hollow shaft of outer to inner diameter ratio as 2. The ratio of the torque carrying capacity of the hollow shaft to solid shaft considering the shear stress criterion alone is (1) 2.5/√3 (2) 5√3/6 (3) √3 (4) √3/2 112) For a circular cross section subjected to shear force, the ratio of maximum shear stress to average shear stress is (1) 1.0 (2) 2.0 (3) 1.5 (4) 4/3
 113) A cantilever beam of span L and flexural rigidity EI carries a point load W, vertically downwards at its free end. The free end of the beam is resting at the centre of another simply supported beam of span L and flexural rigidity EI. The support reactions for the simply supported beam are and (1) W/4, W/4 (2) W/2, W/2 (3) 8W/17, 8W/17 (4) 8W/3, 8W/3
19 [P.T.O.

114) A simply supported beam of span L and flexural rigidity EI carries a UDL of intensity w/unit run all along its span. The beam is supported at its centre by a linear spring of stiffness k. The force carried by the spring is

- (1) $5 \text{kwL}^4 / (\text{kL}^3 + 8 \text{EI})$
- (2) $5kwL^4/8(kL^3+48EI)$
- (3) $5wL^4/8(kL^3+8EI)$
- (4) $5wL^4/8(kL^3+48EI)$

115) The three member plane truss A-B-C-D, shown in Fig.4 supports a vertical load W at B. The magnitude of the force carried by member BD is

(1) W (compressive)

- 0.5 W (compressive)
- (3) $(\sqrt{3}/2)$ W (compressive)
- 0.5W (tensile)

116) The symmetry of flexibility matrix is due to

- (1) Betty's theorem
- (2) Maxwell's reciprocal theorem

(3) Eddy's theorem

(4) Castigliono's theorem

117) A fixed beam of span L and uniform flexural rigidity EI carries a vertical downward load W at its mid span. If a hinge is introduced in the beam at the location of the load, the deflection under the load is

- (1) WL3/12EI
- (2) WL³/24EI (3) WL³/16EI
- (4) WL³/48EI

118) A stepped bar A-B-C of total length 2L carries an axial load P at B as shown in Fig.5. Axial rigidity of segment AB is 2AE and that of BC is AE. The displacement at B is ...

- (1) PL/3AE (2) 0
- (3) PL/2AE
- (4) PL/AE

119) The	static indetern	nnacy	for the conti	nuou	s beam shown	in Fig	.6 IS
ni bou	THE STORY	O RHI	A	uis i	omen lanous	2891	1 A
			77777			191	
			Fig.6				
(1)	6	(2)	3	(3)	2	(4)	4-01-01-01-01
of i	imply supported ntensity 10kN/ m is		The state of the s			_	
(1)	93.75kN.m	(2)	98.75kN.m	(3)	90.25kN.m	(4)	88.75kN.m
(1) (2) (3) (4) 122) A si a pri laye	imply supported re-stressing for er, parallel to the	who reger the ram is span. Hent dispan. I beam ce of the axi	se nan all other less above the best above the best agram just en an the sum of span L an magnitude F s of the mem	oads ending envelor of inte	acting on the sign ment or one person bending mensities of all left form flexural ring eccentricity	span. linates oment oads o gidity e belo	caused by all caused by all n the span. EI is subjected ow the neutral
	ation L/4 from	the su	ipport is	(2)	D-1 2/0E1		
Treat in	PeL ² /4EI PeL ² /2EI	C	en anogel	1	PeL ² /8EI PeL ² /EI		
(3)	TOLIZEI)~		(1)	TCD /LI	itwolog	
	a member sub ermined in such				span, equiva		
(1)	The member those caused					nt load	ls are same as
(2)	The equivalent by the member			ame	set of nodal dis	Sman	nents as caused
in (3)	The equivale equilibrium of	1350		gethe	r with member	er loa	ds ensure the
(4)	THE SHOPLE SHOPLE	nt jo	int loads to			er loa	ds ensure the

					501/	501/A
	orthogrid stru	cture is one w	hich sat	tisfies follo	wing combinate	
i)	A two dimens		tructure	consisting	of members orie	nted in
ii) iii)	Loading plane Member end moments.	e perpendicular actions are th	to the ple axial	lane of stru forces, she	cture. ar forces and b	ending
iv)		en members is al	lwavs 90	0		
v)					and bending mo	ments.
(1)	i, ii, iii, iv, v			i, ii, iii, iv	n Mall Automata	
(3)	ii, iii, iv, v		(4)	i, ii, iv, v	21 10	
125)In t	he stiffness ma	atrix method, the	e bounda	ary condition	ons are needed t	o avert
$\overline{(1)}$	divergent solu	ution	(2)	singularity	a simply suppol	
(3)	irrational solu		(4)		acement vector	
ii) iii) iv) (1)	They are usef They facilitat member orien The are usefu	ful for determini	ng the drong of resent matrices of members of the drong members of the d	isplacemen sultant disp ces.	lacement matric	
, at s	same level, the port reactions anti clockwise 6EI α /L², 2E 6EI α /L², 4E 6EI α /L², 2E	support at righ	support sitive) re sitive) re constitute of the constitute of the constitute of the constitute of the constitute of the constitute of the constitute of the constitute of the constitute of the constitute of the constitute of the constitute of the constitute of the constitute of the	by α radia ts (assumin espectively α/L α/L α/L	y EI, with both sons anti clockwisg upward displaare	se. The
128) Usi			The state of the s			

		e members AB, BC and BD 3m,			
V	vhile	ral rigidity are rigidly connected a e at D it is hinged the distribution f e joint B are respective	actors		
				/11, 3/11, 4/11	
(:	3)	4/11, 4/11, 3/11	(4) 1.	/3, 1/3, 1/3	
	ean	three hinged parabolic arch, the the moment coinciding with H-mom	ent in	dicates	
,		Arch all along carries only radial s			
		Arch all along carries only beam a Arch all along carries only norma			
11 3		Arch all along carries only H- mo		is the salghe	
		ble carrying a load of w/unit run			
		supports are at the same level and	the c	central dip is h. The greatest and	
All all an		tensions in the cable are	(0)	(4 T (2)2) (T 2/01)) T 2/1 (1-	
,	,		12 12 12 12	$\sqrt{((wL/2)^2+(wL^2/8h))}$, wL ² /16h	
(3)	$\sqrt{((wL/2)^2+(wL^2/8h))}, wL^2/8h$	(4)	$\sqrt{((WL/2)^2+(WL^2/2h))}$, $WL^2/8h$	
		ntilever beam AB is fixed at left e	nd A a	and free at B. The corresponding	
((1)	fixed at A and free at B	(2)	free at A and simple support at B	
((3)	free at A and fixed at B	(4)	simple supports at both A and B	
		steel tension member, it's maximum	streng	gth in case of adequately designed	
t	polte	ed connections is governed by	ASIBO	Tarl of training and the state of the state	
	(1)	The slenderness of the member	nian	(2) is connected to the n	
	(2)	The tensile strength of net section		ea of the member.	
	(3)	The strength of the bolted conne			
((4)	The section modulus of the mem	ber		
134)	The	principal reason for adding stiffe	eners t	to the web of a steel beam is to	
nie sia	(1)	Increase its moment carrying cap	acity.		
	(2)	Reduce the deflection of the bear	m.		
	(3)	Increase the stiffness of the web			
	(4)	Improve aesthetics.			
		23		[PTO	

				501/A
135) In th	e built-up steel c	olumns, the lacin	g is provided	109) Three members
i)	to keep all indivi	dual sections tog	ether.	
ii)	to take-up latera	I shear to an exte	nt of 2.5% of ax	ial force.
iii)	to increase the b	ending strength of	of the section.	
iv)	to increase the c	ompressive stren	gth of the sectio	n. [] All [Ending
(1)	i,iii	2) ii, iii	(3) iii, iv	130) in a three hinge
136) The	list of principal c	components of a	plate girder is	o Juengamanandents de lle dotA (1)
i)	Top and bottom	flange plates and	l web plates.	(2) Movelle
ii)	Horizontal stiffe	ners, Intermediat	e and bearing sti	ffeners.
iii)	Cleat angles and	seat angels.	wing carries only	is its forth (A)
iv)	Web splicing and	d flange splicing.		giorgen elden ACITA
(1)	i, iii, iv (2) i, ii, iii	(3) i, ii, iv	(4) ii, iii, iv
137) The	requirements to b	be satisfied in the	design of a gant	ry girder are that it has
to w	rithstand effects of		Carlo de la companya della companya de la companya de la companya della companya	
(1)		mpact effects and		an a specification
(2)				pact effects and fatigue
(3)		ngitudinal loads,		
(4)	Dynamic loads,	longitudinal load	s, impact effects	and fatigue.
138) The	Lug angle is a m	ember which _	- A (1)	
(1)	is connected to economically to		n member to tra	nsfer the tensile force
(2)	is connected to	the main tension	member for erec	ction purpose.
(3)	is connected to	the main tension	member to increa	ase its strength locally
(4)	is connected to	the main tension	member to incre	ase its stiffness
	expression work			
bene		base, a, b = lor nmn member, Poi	nger and shorter sons ratio = 0.25	pase, $\sigma_{bs} = \text{permissible}$ projections of the slab.
	$t = ((3w/\sigma_{bs})(a-b)$	$(5/4)^{1/2}$	(2) $t = ((3w)^2)^{-1}$	$(\sigma_{bs})(a^2-b^2/4))^{1/2}$
	$t = ((3w/\sigma_{bs})(a^2 -$	$(b^2)^{1/2}$	(4) $t = ((3w)$	$/\sigma_{bs})(a-b^2/4))^{1/2}$

LIFAE				501/A	
140) A fi	xed beam of span L	carries a UDL	of int	ensity w/unit run. If the plastic	
mor	nent of the beam sec	ction is M _p , coll	apse	occurs when number of	
	tic hinges are formed				
(1)	2 and 8M _p /L		(2)	3 and $8M_p/L$	
(3)	3 and $16M_p/L$		(4)	2 and 16M _p /L	
mor		rom support to	midd	load W at its free end. Plastic fle of span is 1.5 M_p and from $M = $	
(1)	$1.5M_{p}/L$ (2)	M_p/L	(3)	$2M_{p}/L$ (4) $0.75M_{p}/L$	
142) Acc usir	cording to IS: 456-20 ag RCC with an effect.	000, in the desictive depth d, th	ne crit	f isolated RCC column footing tical sections to be checked are	CONTROL MANAGEMENT
(1)				mn, one-way shear at d/2 away hear at d around the column.	
(2)	Bending moment a from the face of co	t the face of the	e col	umn, one-way shear at d away hear at d around the column.	
(3)	Bending moment a shear at d away fra around the column	rom the face of	m the	e face of the column, one-way umn and two-way shear at d/2	
(4)				umn, one-way shear at d away hear at d/2 around the column.	
slal	nimum amount of hig os shall not be less the slab according to IS	han		bar reinforcement used in solid the total cross sectional area of	
(1)		0.12%	(3)	0.20% (4) 0.25%	
reii to l	nforcement of	% of the web a	rea is	nore than mm, side face needed to be provided according	5
(1)	600, 0.1% (2)	750, 0.15%	(3)	600, 0.15% (4) 750, 0.1%)
145)Ma	eximum spacing of ve RCC beam shall no	ertical shear rein	force	ement measured along the axis of	f
	0.75d or 300mm			0.75d or 400mm	
\ /	0.50d or 250mm			0.5d or 300mm	
(3)	0.50d of 250mm	25	(1)	[P.T.O	

501/A
146) The bearing stress check for column footing in limit state design specifies that the value subjected to a maximum of 2 multiplied by bearing stress
shall be more than the compressive stress at the base of the column.
Λ_1 = supporting area for bearing of footing, which in sloped or stepped
footing maybe taken as the area of the lower base of the largest frustum of a
pyramid or cone contained wholly within the footing and having for its upper
base, the area actually loaded and having side slope of one vertical to two
horizontal; and, A_2 = loaded area at the column base.
(1) $\sqrt{(A_1/A_2)}$, 0.30 f_{ck} (2) $\sqrt{(A_1/2A_2)}$, 0.45 f_{ck}
(3) $\sqrt{(A_1/A_2)}$, 0.45 f_{ck} (4) $\sqrt{(A_1/A_2)}$, 0.60 f_{ck}
147) The functionality of a wall, retaining wall and a shear wall in order is
i) resist predominantly vertical loads
ii) resist lateral loads perpendicular to the plane of wall
iii) resist lateral loads in the plane of wall
(1) ii, iii, i (2) i, ii, iii (3) iii, ii, i (4) ii, i, iii
148) Splicing of reinforcement in flexure members is taken-up at a location where
bending moment is less than the moment of resistance at that section
and not more than of bars are spliced at any particular section.
(1) 75%, 50% (2) 50%, 75% (3) 25%, 50% (4) 50%, 50%
149) The loss stress due to creep in steel in a pre-stress problem is given by the
formula, where α = creep coefficient, f_c = stress in concrete,
$E_c = modulus$ of elasticity of concrete and $E_s = modulus$ of elasticity of steel.
(1) $\alpha(f_c/E_c) E_s$ (2) $\alpha(f_c/2E_c) E_s$ (3) $\alpha(f_c/E_s) E_c$ (4) $2\alpha(f_c/E_c) E_s$
150) The principal reason for adopting pre-stressing cable profiles in flexure
members as parabolic is due to the fact that
(1) They need to resist both bending moments and shear forces in members.

- - (2) The strength of pre-stressing cables is maximum in parabolic shapes
 - (3) The profile of moment caused by self weight of structure is parabolic - and to counter this, the cable profile also needs to be parabolic.
 - (4) Its a regular practice

