Paper Specific Instructions

- 1. The examination is of 3 hours duration. There are a total of 60 questions carrying 100 marks. The entire paper is divided into three sections, A, B and C. All sections are compulsory. Questions in each section are of different types.
- 2. Section A contains a total of 30 Multiple Choice Questions (MCQ). Each MCQ type question has four choices out of which only one choice is the correct answer. Questions Q.1 - Q.30 belong to this section and carry a total of 50 marks. Q.1 - Q.10 carry 1 mark each and Questions Q.11 - Q.30 carry 2 marks each.
- 3. Section B contains a total of 10 Multiple Select Questions (MSQ). Each MSQ type question is similar to MCQ but with a difference that there may be one or more than one choice(s) that are correct out of the four given choices. The candidate gets full credit if he/she selects all the correct answers only and no wrong answers. Questions Q.31 – Q.40 belong to this section and carry 2 marks each with a total of 20 marks.
- **4. Section** C contains a total of 20 Numerical Answer Type (NAT) questions. For these NAT type questions, the answer is a real number which needs to be entered using the virtual keyboard on the monitor. No choices will be shown for these type of questions. Questions Q.41 – Q.60 belong to this section and carry a total of 30 marks. Q.41 – Q.50 carry 1 mark each and Questions Q.51 – Q.60 carry 2 marks each.
- 5. In all sections, questions not attempted will result in zero mark. In Section A (MCQ), wrong answer will result in **NEGATIVE** marks. For all 1 mark questions, 1/3 marks will be deducted for each wrong answer. For all 2 marks questions, 2/3 marks will be deducted for each wrong answer. In **Section – B** (MSQ), there is NO NEGATIVE and NO PARTIAL marking provisions. There is NO NEGATIVE marking in **Section** – **C** (NAT) as well.
- 6. Only Virtual Scientific Calculator is allowed. Charts, graph sheets, tables, cellular phone or other electronic gadgets are **NOT** allowed in the examination hall.
- 7. The Scribble Pad will be provided for rough work.

Useful information

N	set of all natural numbers {1, 2, 3,}
\mathbb{Z}	set of all integers $\{0, \pm 1, \pm 2,\}$
\mathbb{Q}	set of all rational numbers
\mathbb{R}	set of all real numbers
\mathbb{C}	set of all complex numbers
\mathbb{R}^n	<i>n</i> -dimensional Euclidean space $\{(x_1, x_2,, x_n) \mid x_j \in \mathbb{R}, 1 \le j \le n \}$
S_n	group of all permutations of <i>n</i> distinct symbols
\mathbb{Z}_n	group of congruence classes of integers modulo n
\mathbb{Z}_n $\hat{\imath},\hat{\jmath},\hat{k}$	unit vectors having the directions of the positive x , y and z axes of a three
	dimensional rectangular coordinate system
∇	$\hat{\iota}\frac{\partial}{\partial x} + \hat{\jmath}\frac{\partial}{\partial y} + \hat{k}\frac{\partial}{\partial z}$
$M_{m \times n}(\mathbb{R})$	real vector space of all matrices of order $m \times n$ with entries in \mathbb{R}
sup	supremum
inf	infimum

MA

https://previouspaper.in

SECTION – A

MULTIPLE CHOICE QUESTIONS (MCQ)

Q. 1 – Q.10 carry one mark each.

- Q.1 Which one of the following is TRUE?
 - (A) \mathbb{Z}_n is cyclic if and only if n is prime
 - (B) Every proper subgroup of \mathbb{Z}_n is cyclic
 - (C) Every proper subgroup of S_4 is cyclic
 - (D) If every proper subgroup of a group is cyclic, then the group is cyclic
- Q.2 Let $a_n = \frac{b_{n+1}}{b_n}$, where $b_1 = 1$, $b_2 = 1$ and $b_{n+2} = b_n + b_{n+1}$, $n \in \mathbb{N}$. Then $\lim_{n \to \infty} a_n$ is
 - (A) $\frac{1-\sqrt{5}}{2}$ (B) $\frac{1-\sqrt{3}}{2}$ (C) $\frac{1+\sqrt{3}}{2}$

- Q.3 If $\{v_1, v_2, v_3\}$ is a linearly independent set of vectors in a vector space over \mathbb{R} , then which one of the following sets is also linearly independent?
 - (A) $\{v_1 + v_2 v_3, 2v_1 + v_2 + 3v_3, 5v_1 + 4v_2\}$
 - (B) $\{v_1 v_2, v_2 v_3, v_3 v_1\}$
 - (C) $\{v_1 + v_2 v_3, v_2 + v_3 v_1, v_3 + v_1 v_2, v_1 + v_2 + v_3\}$
 - (D) $\{v_1 + v_2, v_2 + 2v_3, v_3 + 3v_1\}$
- Q.4 Let a be a positive real number. If f is a continuous and even function defined on the interval [-a, a], then $\int_{-a}^{a} \frac{f(x)}{1+e^x} dx$ is equal to
 - (A) $\int_0^a f(x) \, dx$

(B) $2\int_0^a \frac{f(x)}{1+e^x} dx$

(C) $2\int_0^a f(x) dx$

- (D) $2a \int_0^a \frac{f(x)}{1+e^x} dx$
- The tangent plane to the surface $z = \sqrt{x^2 + 3y^2}$ at (1, 1, 2) is given by
 - (A) x 3y + z = 0

(B) x + 3y - 2z = 0

(C) 2x + 4y - 3z = 0

(D) 3x - 7y + 2z = 0

Q.6 In \mathbb{R}^3 , the cosine of the acute angle between the surfaces $x^2 + y^2 + z^2 - 9 = 0$ and

 $z - x^2 - y^2 + 3 = 0$ at the point (2, 1, 2) is

- (B) $\frac{10}{5\sqrt{21}}$ (C) $\frac{8}{3\sqrt{21}}$
- (D) $\frac{10}{3\sqrt{21}}$
- Q.7 Let $f: \mathbb{R}^3 \to \mathbb{R}$ be a scalar field, $\vec{v}: \mathbb{R}^3 \to \mathbb{R}^3$ be a vector field and let $\vec{a} \in \mathbb{R}^3$ be a constant vector. If \vec{r} represents the position vector $x\hat{\imath} + y\hat{\jmath} + z\hat{k}$, then which one of the following is FALSE?
 - (A) $curl(f \vec{v}) = grad(f) \times \vec{v} + f curl(\vec{v})$
 - (B) $div(grad(f)) = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial v^2} + \frac{\partial^2}{\partial z^2}\right) f$
 - (C) $curl(\vec{a} \times \vec{r}) = 2 |\vec{a}| \vec{r}$
 - (D) $div\left(\frac{\vec{r}}{|\vec{r}|^3}\right) = 0$, for $\vec{r} \neq \vec{0}$
- Q.8 In \mathbb{R}^2 , the family of trajectories orthogonal to the family of asteroids $x^{2/3} + y^{2/3} = a^{2/3}$ is given by
 - (A) $x^{4/3} + v^{4/3} = c^{4/3}$

(C) $x^{5/3} - y^{5/3} = c^{5/3}$

- (B) $x^{4/3} y^{4/3} = c^{4/3}$ (D) $x^{2/3} y^{2/3} = c^{2/3}$
- Q.9 Consider the vector space V over \mathbb{R} of polynomial functions of degree less than or equal to 3 defined on \mathbb{R} . Let $T:V\to V$ be defined by (Tf)(x)=f(x)-xf'(x). Then the rank of T is
 - (A) 1

- (D) 4
- Q.10 Let $s_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}$ for $n \in \mathbb{N}$. Then which one of the following is TRUE for the sequence $\{s_n\}_{n=1}^{\infty}$
 - (A) $\{s_n\}_{n=1}^{\infty}$ converges in \mathbb{Q}
 - (B) $\{s_n\}_{n=1}^{\infty}$ is a Cauchy sequence but does not converge in \mathbb{Q}
 - (C) the subsequence $\{s_{k^n}\}_{n=1}^{\infty}$ is convergent in \mathbb{R} , only when k is even natural number
 - (D) $\{s_n\}_{n=1}^{\infty}$ is not a Cauchy sequence

Q. 11 – Q. 30 carry two marks each.

Q.11
$$\operatorname{Let} a_n = \begin{cases} 2 + \frac{(-1)^{\frac{n-1}{2}}}{n} &, & \text{if } n \text{ is odd} \\ 1 + \frac{1}{2^n} &, & \text{if } n \text{ is even} \end{cases}, n \in \mathbb{N}.$$

Then which one of the following is TRUE?

- (A) sup $\{a_n \mid n \in \mathbb{N}\} = 3$ and inf $\{a_n \mid n \in \mathbb{N}\} = 1$
- (B) $\lim \inf (a_n) = \lim \sup (a_n) = \frac{3}{2}$
- (C) $\sup \{a_n \mid n \in \mathbb{N}\} = 2 \text{ and } \inf \{a_n \mid n \in \mathbb{N}\} = 1$
- (D) $\liminf (a_n) = 1$ and $\limsup (a_n) = 3$
- Q.12 Let $a, b, c \in \mathbb{R}$. Which of the following values of a, b, c do NOT result in the convergence of the series

$$\sum_{n=3}^{\infty} \frac{a^n}{n^b (\log_e n)^c} ?$$

- (A) $|a| < 1, b \in \mathbb{R}, c \in \mathbb{R}$
- (B) $a = 1, b > 1, c \in \mathbb{R}$

(C) $a = 1, b \ge 0, c < 1$

- Q.13 Let $a_n = n + \frac{1}{n}$, $n \in \mathbb{N}$. Then the sum of the series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{a_{n+1}}{n!}$ is
 - (A) $e^{-1} 1$ (B) e^{-1} (C) $1 e^{-1}$ (D) $1 + e^{-1}$

- Q.14 Let $a_n = \frac{(-1)^n}{\sqrt{1+n}}$ and let $c_n = \sum_{k=0}^n a_{n-k} a_k$, where $n \in \mathbb{N} \cup \{0\}$. Then which one of the following is TRUE?
 - (A) Both $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=1}^{\infty} c_n$ are convergent
 - (B) $\sum_{n=0}^{\infty} a_n$ is convergent but $\sum_{n=1}^{\infty} c_n$ is not convergent
 - (C) $\sum_{n=1}^{\infty} c_n$ is convergent but $\sum_{n=0}^{\infty} a_n$ is not convergent
 - (D) Neither $\sum_{n=0}^{\infty} a_n$ nor $\sum_{n=1}^{\infty} c_n$ is convergent

- Q.15 Suppose that $f, g : \mathbb{R} \to \mathbb{R}$ are differentiable functions such that f is strictly increasing and g is strictly decreasing. Define p(x) = f(g(x)) and q(x) = g(f(x)), $\forall x \in \mathbb{R}$. Then, for t > 0, the sign of $\int_0^t p'(x) \left(q'(x) - 3 \right) dx$ is
 - (A) positive
- (B) negative
- (C) dependent on t
- (D) dependent on f and g
- Q.16 For $x \in \mathbb{R}$, let $f(x) = \begin{cases} x^3 \sin(\frac{1}{x}), & x \neq 0 \\ 0, & x = 0 \end{cases}$. Then which one of the following is FALSE?
 - (A) $\lim_{x \to 0} \frac{f(x)}{x} = 0$
 - (B) $\lim_{x \to 0} \frac{f(x)}{x^2} = 0$
 - (C) $\frac{f(x)}{x^2}$ has infinitely many maxima and minima on the interval (0,1)
 - (D) $\frac{f(x)}{x^4}$ is continuous at x = 0 but not differentiable at x = 0
- Q.17 Let $f(x,y) = \begin{cases} \frac{xy}{(x^2+y^2)^{\alpha}}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$

Then which one of the following is TRUE for f at the point (0,0)?

- (A) For $\alpha = 1$, f is continuous but not differentiable
- (B) For $\alpha = \frac{1}{2}$, f is continuous and differentiable
- (C) For $\alpha = \frac{1}{4}$, f is continuous and differentiable
- (D) For $\alpha = \frac{3}{4}$, f is neither continuous nor differentiable
- Q.18 Let $a, b \in \mathbb{R}$ and let $f: \mathbb{R} \to \mathbb{R}$ be a thrice differentiable function. If $z = e^u f(v)$, where u = ax + by and v = ax - by, then which one of the following is TRUE?

 - (A) $b^2 z_{xx} a^2 z_{yy} = 4a^2 b^2 e^u f'(v)$ (B) $b^2 z_{xx} a^2 z_{yy} = -4e^u f'(v)$
 - (C) $bz_x + az_y = abz$

- (D) $bz_x + az_y = -abz$
- Q.19 Consider the region D in the yz plane bounded by the line $y = \frac{1}{2}$ and the curve $y^2 + z^2 = 1$, where $y \ge 0$. If the region D is revolved about the z-axis in \mathbb{R}^3 , then the volume of the resulting solid is
 - (A) $\frac{\pi}{\sqrt{2}}$
- (B) $\frac{2\pi}{\sqrt{2}}$
- (C) $\frac{\pi\sqrt{3}}{2}$
- (D) $\pi\sqrt{3}$

- Q.20 If $\vec{F}(x,y) = (3x 8y)\hat{\imath} + (4y 6xy)\hat{\jmath}$ for $(x,y) \in \mathbb{R}^2$, then $\oint_C \vec{F} \cdot d\vec{r}$, where C is the boundary of the triangular region bounded by the lines x = 0, y = 0 and x + y = 1 oriented in the anti-clockwise direction, is
 - (A) $\frac{5}{2}$
- (C) 4
- (D)
- Q.21 Let U, V and W be finite dimensional real vector spaces, $T: U \to V$, $S: V \to W$ and $P: W \to U$ be linear transformations. If range (ST) = nullspace (P), nullspace (ST) = range (P) and rank (T) = rank (S), then which one of the following is TRUE?
 - (A) nullity of T = nullity of S
 - (B) dimension of $U \neq$ dimension of W
 - (C) If dimension of V = 3, dimension of U = 4, then P is not identically zero
 - (D) If dimension of V = 4, dimension of U = 3 and T is one-one, then P is identically zero
- Q.22 Let y(x) be the solution of the differential equation $\frac{dy}{dx} + y = f(x)$, for $x \ge 0$, y(0) = 0, where $f(x) = \begin{cases} 2, & 0 \le x < 1 \\ 0, & x \ge 1 \end{cases}$. Then $y(x) = \frac{1}{2} \int_{-\infty}^{\infty} f(x) \, dx$
 - (A) $2(1 e^{-x})$ when $0 \le x < 1$ and $2(e 1)e^{-x}$ when $x \ge 1$
 - (B) $2(1 e^{-x})$ when $0 \le x < 1$ and 0 when $x \ge 1$
 - (C) $2(1 e^{-x})$ when $0 \le x < 1$ and $2(1 e^{-1})e^{-x}$ when $x \ge 1$
 - (D) $2(1 e^{-x})$ when $0 \le x < 1$ and $2e^{1-x}$ when $x \ge 1$
- Q.23 An integrating factor of the differential equation $\left(y + \frac{1}{3}y^3 + \frac{1}{2}x^2\right)dx + \frac{1}{4}(x + xy^2)dy = 0$ is

- (B) $3 \log_e x$ (C) x^3 (D) $2 \log_e x$
- Q.24 A particular integral of the differential equation $y'' + 3y' + 2y = e^{e^x}$ is
 - (A) $e^{e^x}e^{-x}$
- (B) $e^{e^x}e^{-2x}$ (C) $e^{e^x}e^{2x}$ (D) $e^{e^x}e^x$
- Q.25 Let G be a group satisfying the property that $f: G \to \mathbb{Z}_{221}$ is a homomorphism implies f(g) = 0, $\forall g \in G$. Then a possible group G is
 - (A) \mathbb{Z}_{21}
- (B) \mathbb{Z}_{51}
- (C) \mathbb{Z}_{91}
- (D) \mathbb{Z}_{119}

JAM 2018

Q.26 Let *H* be the quotient group \mathbb{Q}/\mathbb{Z} . Consider the following statements.

- I. Every cyclic subgroup of *H* is finite.
- II. Every finite cyclic group is isomorphic to a subgroup of H.

Which one of the following holds?

- (A) I is TRUE but II is FALSE
- (B) II is TRUE but I is FALSE
- (C) both I and II are TRUE
- (D) neither I nor II is TRUE

Q.27 Let I denote the 4×4 identity matrix. If the roots of the characteristic polynomial of a 4×4 matrix

$$M$$
 are $\pm \sqrt{\frac{1\pm\sqrt{5}}{2}}$, then $M^8 =$

- (A) $I + M^2$ (B) $2I + M^2$ (C) $2I + 3M^2$

Q.28 Consider the group $\mathbb{Z}^2 = \{(a,b) | a,b \in \mathbb{Z}\}$ under component-wise addition. Then which of the following is a subgroup of \mathbb{Z}^2 ?

- (A) $\{(a,b)\in\mathbb{Z}^2|ab=0\}$
- (B) $\{(a,b) \in \mathbb{Z}^2 | 3a + 2b = 15\}$
- (C) $\{(a,b) \in \mathbb{Z}^2 | 7 \text{ divides } ab\}$
- (D) $\{(a,b) \in \mathbb{Z}^2 | 2 \text{ divides } a \text{ and } 3 \text{ divides } b\}$

Q.29 Let $f: \mathbb{R} \to \mathbb{R}$ be a function and let J be a bounded open interval in \mathbb{R} . Define

$$W(f,J) = \sup \{f(x) \mid x \in J\} - \inf \{f(x) \mid x \in J\}$$
.

Which one of the following is FALSE?

- (A) $W(f,J_1) \le W(f,J_2)$ if $J_1 \subset J_2$
- (B) If f is a bounded function in J and $J \supset J_1 \supset J_2 \cdots \supset J_n \supset \cdots$ such that the length of the interval J_n tends to 0 as $n \to \infty$, then $\lim_{n \to \infty} W(f, J_n) = 0$
- (C) If f is discontinuous at a point $a \in J$, then $W(f, J) \neq 0$
- (D) If f is continuous at a point $a \in J$, then for any given $\epsilon > 0$ there exists an interval $I \subset J$ such that $W(f,I) < \epsilon$

Q.30 For $x > \frac{-1}{2}$, let $f_1(x) = \frac{2x}{1+2x}$, $f_2(x) = \log_e(1+2x)$ and $f_3(x) = 2x$. Then which one of the following is TRUE?

(A)
$$f_3(x) < f_2(x) < f_1(x)$$
 for $0 < x < \frac{\sqrt{3}}{2}$

- (B) $f_1(x) < f_2(x) < f_2(x)$ for x > 0
- (C) $f_1(x) + f_2(x) < \frac{f_3(x)}{2}$ for $x > \frac{\sqrt{3}}{2}$
- (D) $f_2(x) < f_1(x) < f_3(x)$ for x > 0

SECTION - B

MULTIPLE SELECT QUESTIONS (MSQ)

Q. 31 – Q. 40 carry two marks each.

- Q.31 Let $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ be defined by $f(x) = x + \frac{1}{x^3}$. On which of the following interval(s) is f one-one?
 - (A) $(-\infty, -1)$ (B) (0, 1)

- Q.32 The solution(s) of the differential equation $\frac{dy}{dx} = (\sin 2x) y^{1/3}$ satisfying y(0) = 0 is (are)

- (B) $y(x) = -\sqrt{\frac{8}{27}} \sin^3 x$ (D) $y(x) = \sqrt{\frac{8}{27}} \cos^3 x$
- (A) y(x) = 0(C) $y(x) = \sqrt{\frac{8}{27}} \sin^3 x$

- Q.33 Suppose f, g, h are permutations of the set $\{\alpha, \beta, \gamma, \delta\}$, where

f interchanges α and β but fixes γ and δ ,

g interchanges β and γ but fixes α and δ ,

h interchanges γ and δ but fixes α and β .

Which of the following permutations interchange(s) α and δ but fix(es) β and γ ?

- (A) $f \circ g \circ h \circ g \circ f$ (B) $g \circ h \circ f \circ h \circ g$ (C) $g \circ f \circ h \circ f \circ g$ (D) $h \circ g \circ f \circ g \circ h$
- Q.34 Let P and Q be two non-empty disjoint subsets of \mathbb{R} . Which of the following is (are) FALSE?
 - (A) If P and Q are compact, then $P \cup Q$ is also compact
 - (B) If P and Q are not connected, then $P \cup Q$ is also not connected
 - (C) If $P \cup Q$ and P are closed, then Q is closed
 - (D) If $P \cup Q$ and P are open, then Q is open

- Q.35 Let $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ denote the group of non-zero complex numbers under multiplication. Suppose $Y_n = \{ z \in \mathbb{C} \mid z^n = 1 \}, n \in \mathbb{N}.$ Which of the following is (are) subgroup(s) of \mathbb{C}^* ?
- (A) $\bigcup_{n=1}^{100} Y_n$ (B) $\bigcup_{n=1}^{\infty} Y_{2^n}$ (C) $\bigcup_{n=100}^{\infty} Y_n$ (D) $\bigcup_{n=1}^{\infty} Y_n$
- Q.36 Suppose $\alpha, \beta, \gamma \in \mathbb{R}$. Consider the following system of linear equations.

 $x + y + z = \alpha$, $x + \beta y + z = \gamma$, $x + y + \alpha z = \beta$. If this system has at least one solution, then which of the following statements is (are) TRUE?

(A) If $\alpha = 1$ then $\gamma = 1$

(B) If $\beta = 1$ then $\gamma = \alpha$

(C) If $\beta \neq 1$ then $\alpha = 1$

- (D) If $\gamma = 1$ then $\alpha = 1$
- Q.37 Let $m, n \in \mathbb{N}$, m < n, $P \in M_{n \times m}(\mathbb{R})$, $Q \in M_{m \times n}(\mathbb{R})$. Then which of the following is (are) NOT possible?
 - (A) rank(PQ) = n
 - (B) rank(QP) = m
 - (C) rank(PQ) = m
 - (D) $rank(QP) = \left[\frac{m+n}{2}\right]$, the smallest integer larger than or equal to $\frac{m+n}{2}$
- Q.38 If $\vec{F}(x, y, z) = (2x + 3yz)\hat{i} + (3xz + 2y)\hat{j} + (3xy + 2z)\hat{k}$ for $(x, y, z) \in \mathbb{R}^3$, then which among the following is (are) TRUE?
 - (A) $\nabla \times \vec{F} = \vec{0}$
 - (B) $\oint_C \vec{F} \cdot d\vec{r} = 0$ along any simple closed curve C
 - (C) There exists a scalar function $\phi: \mathbb{R}^3 \to \mathbb{R}$ such that $\nabla \cdot \vec{F} = \phi_{xx} + \phi_{yy} + \phi_{zz}$
 - (D) $\nabla \cdot \vec{F} = 0$
- Q.39 Which of the following subsets of \mathbb{R} is (are) connected?
 - (A) $\{x \in \mathbb{R} \mid x^2 + x > 4\}$

- (B) $\{x \in \mathbb{R} \mid x^2 + x < 4\}$
- (C) $\{x \in \mathbb{R} \mid |x| < |x-4|\}$
- (D) $\{x \in \mathbb{R} \mid |x| > |x-4|\}$

JAM 2018 Mathematics - MA

- Q.40 Let S be a subset of \mathbb{R} such that 2018 is an interior point of S. Which of the following is (are) TRUE?
 - (A) S contains an interval
 - (B) There is a sequence in S which does not converge to 2018
 - (C) There is an element $y \in S$, $y \neq 2018$ such that y is also an interior point of S
 - (D) There is a point $z \in S$, such that |z 2018| = 0.002018

SECTION - C

NUMERICAL ANSWER TYPE (NAT)

Q. 41 - Q. 50 carry one mark each.

Q.41 The order of the element $(1\ 2\ 3)(2\ 4\ 5)(4\ 5\ 6)$ in the group S_6 is

Q.42 Let $\phi(x, y, z) = 3y^2 + 3yz$ for $(x, y, z) \in \mathbb{R}^3$. Then the absolute value of the directional derivative of ϕ in the direction of the line $\frac{x-1}{2} = \frac{y-2}{-1} = \frac{z}{-2}$, at the point (1, -2, 1) is _____

Q.43 Let $f(x) = \sum_{n=0}^{\infty} (-1)^n x(x-1)^n$ for 0 < x < 2. Then the value of $f\left(\frac{\pi}{4}\right)$ is ____

Q.44 Let
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 be given by
$$f(x,y) = \begin{cases} \frac{x^2 y (x-y)}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$
Then $\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right)$ at the point $(0,0)$ is

Then $\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) - \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right)$ at the point (0,0) is _____

Q.45 Let $f(x,y) = \sqrt{x^3y} \sin\left(\frac{\pi}{2} e^{\left(\frac{y}{x}-1\right)}\right) + xy \cos\left(\frac{\pi}{3} e^{\left(\frac{x}{y}-1\right)}\right)$ for $(x,y) \in \mathbb{R}^2$, x > 0, y > 0. Then $f_x(1,1) + f_v(1,1) =$ _____

Q.46 Let $f:[0,\infty)\to[0,\infty)$ be continuous on $[0,\infty)$ and differentiable on $(0,\infty)$. If $f(x) = \int_0^x \sqrt{f(t)} dt$, then f(6) =_____

Q.47 Let $a_n = \frac{(1+(-1)^n)}{2^n} + \frac{(1+(-1)^{n-1})}{3^n}$. Then the radius of convergence of the power series $\sum_{n=1}^{\infty} a_n x^n$ about x=0 is ______

- Q.48 Let A_6 be the group of even permutations of 6 distinct symbols. Then the number of elements of order 6 in A_6 is _____
- Q.49 Let W_1 be the real vector space of all 5×2 matrices such that the sum of the entries in each row is zero. Let W_2 be the real vector space of all 5×2 matrices such that the sum of the entries in each column is zero. Then the dimension of the space $W_1 \cap W_2$ is _____
- Q.50 The coefficient of x^4 in the power series expansion of $e^{\sin x}$ about x = 0 is _____ (correct up to three decimal places).

Q. 51 – Q. 60 carry two marks each.

- Q.51 Let $a_k = (-1)^{k-1}$, $s_n = a_1 + a_2 + \dots + a_n$ and $\sigma_n = (s_1 + s_2 + \dots + s_n)/n$, where $k, n \in \mathbb{N}$. Then $\lim_{n \to \infty} \sigma_n$ is _____ (correct up to one decimal place).
- Q.52 Let $f: \mathbb{R} \to \mathbb{R}$ be such that f'' is continuous on \mathbb{R} and f(0) = 1, f'(0) = 0 and f''(0) = -1. Then $\lim_{x \to \infty} \left(f\left(\sqrt{\frac{2}{x}}\right) \right)^x$ is ______ (correct up to three decimal places).
- Q.53 Suppose x, y, z are positive real numbers such that x + 2y + 3z = 1. If M is the maximum value of xyz^2 , then the value of $\frac{1}{M}$ is _____

Q.54 If the volume of the solid in \mathbb{R}^3 bounded by the surfaces

$$x=-1,$$
 $x=1,$ $y=-1,$ $y=1,$ $z=2,$ $y^2+z^2=2$ is $\alpha-\pi$, then $\alpha=$

Q.55 If
$$\alpha = \int_{\pi/6}^{\pi/3} \frac{\sin t + \cos t}{\sqrt{\sin 2t}} dt$$
, then the value of $\left(2\sin\frac{\alpha}{2} + 1\right)^2$ is _____

Q.56 The value of the integral

$$\int_0^1 \int_x^1 y^4 e^{xy^2} \, dy \, dx$$

is _____ (correct up to three decimal places).

- Q.57 Suppose $Q \in M_{3\times 3}(\mathbb{R})$ is a matrix of rank 2. Let $T: M_{3\times 3}(\mathbb{R}) \to M_{3\times 3}(\mathbb{R})$ be the linear transformation defined by T(P) = QP. Then the rank of T is ______
- Q.58 The area of the parametrized surface

$$S = \{((2 + \cos u)\cos v, (2 + \cos u)\sin v, \sin u) \in \mathbb{R}^3 \mid 0 \le u \le \frac{\pi}{2}, 0 \le v \le \frac{\pi}{2}\}$$
 is _____ (correct up to two decimal places).

- Q.59 If x(t) is the solution to the differential equation $\frac{dx}{dt} = x^2t^3 + xt$, for t > 0, satisfying x(0) = 1, then the value of $x(\sqrt{2})$ is _____ (correct up to two decimal places).
- Q.60 If $y(x) = v(x) \sec x$ is the solution of $y'' (2 \tan x) y' + 5y = 0$, $-\frac{\pi}{2} < x < \frac{\pi}{2}$, satisfying y(0) = 0 and $y'(0) = \sqrt{6}$, then $v\left(\frac{\pi}{6\sqrt{6}}\right)$ is _____ (correct up to two decimal places).

END OF THE QUESTION PAPER

Paper Code : MA				
Q No.	Question Type (QT)	Section	Key/Range (KY)	
1	MCQ	А	В	
2	MCQ	А	D	
3	MCQ	А	D	
4	MCQ	Α	А	
5	MCQ	А	В	
6	MCQ	А	С	
7	MCQ	А	С	
8	MCQ	А	В	
9	MCQ	А	С	
10	MCQ	А	В	
11	MCQ	А	A	
12	MCQ	А	C	
13	MCQ	А	D	
14	MCQ	Α	В	
15	MCQ	A	А	
16	MCQ	А	D	
17	MCQ	А	С	
18	MCQ	А	А	
19	MCQ	А	С	
20	MCQ	Α	В	
21	MCQ	Α	С	
22	MCQ	Α	А	
23	MCQ	А	С	

Paper Code : MA				
Q No.	Question Type (QT)	Section	Key/Range (KY)	
24	MCQ	Α	В	
25	MCQ	Α	А	
26	MCQ	Α	С	
27	MCQ	А	С	
28	MCQ	А	D	
29	MCQ	А	В	
30	MCQ	А	С	
31	MSQ	В	В	
32	MSQ	В	A,B,C	
33	MSQ	В	A,D	
34	MSQ	В	B,C,D	
35	MSQ	В	B,C,D	
36	MSQ	В	A,B	
37	MSQ	В	A,D	
38	MSQ	В	A,B,C	
39	MSQ	В	B,C,D	
40	MSQ	В	A,B,C	
41	NAT	С	4 to 4	
42	NAT	С	6.5 to 7.5	
43	NAT	С	1 to 1	
44	NAT	С	1 to 1	
45	NAT	С	3 to 3	
46	NAT	С	9 to 9	

Paper Code : MA				
Q No.	Question Type (QT)	Section	Key/Range (KY)	
47	NAT	С	2 to 2	
48	NAT	С	0 to 0	
49	NAT	С	4 to 4	
50	NAT	С	-0.130 to -0.120	
51	NAT	С	0.4 to 0.6	
52	NAT	С	0.350 to 0.380	
53	NAT	С	1140 to 1160	
54	NAT	С	5.99 to 6.01	
55	NAT	С	2.9 to 3.1	
56	NAT	С	0.230 to 0.250	
57	NAT	С	6 to 6	
58	NAT	С	6.30 to 6.70	
59	NAT	С	-2.80 to -2.70	
60	NAT	С	0.5 to 0.5	