$\mathbb{N} = \{1, 2, \ldots\}.$

 $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}.$

 \mathbb{Q} = the set of rational numbers.

 \mathbb{R} = the set of real numbers.

 \mathbb{R}^n = the *n*-dimensional real space with the Euclidean topology.

 \mathbb{C} = the set of complex numbers.

 \mathbb{C}^n = the *n*-dimensional complex space with the Euclidean topology.

 $M_n(\mathbb{R}), M_n(\mathbb{C}) =$ the vector space of $n \times n$ real or complex matrices, respectively.

f', f'' = the first and second derivatives of the function f, respectively.

 $f^{(n)}$ = the *n*th. derivative of the function f.

 \int_C stands for the line integral over the curve C

 $I_n =$ the $n \times n$ identity matrix.

 A^{-1} = the inverse of an invertible matrix A.

 S_n = the permutation group on n symbols.

 $\hat{i} = (1, 0, 0), \hat{j} = (0, 1, 0)$ and $\hat{k} = (0, 0, 1).$

 $\ln x$ = the natural logarithm of x (to the base e).

|X| = the number of elements in a finite set X.

 \mathbb{Z}_n = the additive group of integers modulo n.

 $\arctan(x)$ denotes the unique $\theta \in (-\pi/2, \pi/2)$ such that $\tan \theta = x$.

All vector spaces are over the real or complex field, unless otherwise stated.

SECTION – A MULTIPLE CHOICE QUESTIONS (MCQ)

Q. 1 – Q. 10 carry one mark each.

Q. 1 Let $0 < \alpha < 1$ be a real number. The number of differentiable functions $y : [0, 1] \rightarrow [0, \infty)$, having continuous derivative on [0, 1] and satisfying

$$y'(t) = (y(t))^{\alpha}, t \in [0, 1],$$

 $y(0) = 0,$

is

- (A) exactly one.
- (C) finite but more than two.

(B) exactly two.

(D) infinite.

- Q. 2 Let $P : \mathbb{R} \to \mathbb{R}$ be a continuous function such that P(x) > 0 for all $x \in \mathbb{R}$. Let y be a twice differentiable function on \mathbb{R} satisfying y''(x) + P(x)y'(x) y(x) = 0 for all $x \in \mathbb{R}$. Suppose that there exist two real numbers $a, b \ (a < b)$ such that y(a) = y(b) = 0. Then
 - (A) y(x) = 0 for all $x \in [a, b]$.

(C) y(x) < 0 for all $x \in (a, b)$.

(B) y(x) > 0 for all $x \in (a, b)$.

(D) y(x) changes sign on (a, b).

Q. 3 Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function satisfying f(x) = f(x+1) for all $x \in \mathbb{R}$. Then

- (A) f is not necessarily bounded above.
- (B) there exists a unique $x_0 \in \mathbb{R}$ such that $f(x_0 + \pi) = f(x_0)$.
- (C) there is no $x_0 \in \mathbb{R}$ such that $f(x_0 + \pi) = f(x_0)$.
- (D) there exist infinitely many $x_0 \in \mathbb{R}$ such that $f(x_0 + \pi) = f(x_0)$.

MA

Q. 4 Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function such that for all $x \in \mathbb{R}$,

$$\int_{0}^{1} f(xt) \, dt = 0. \tag{(*)}$$

Then

- (A) f must be identically 0 on the whole of \mathbb{R} .
- (B) there is an f satisfying (*) that is identically 0 on (0, 1) but not identically 0 on the whole of \mathbb{R} .
- (C) there is an f satisfying (*) that takes both positive and negative values.
- (D) there is an f satisfying (*) that is 0 at infinitely many points, but is not identically zero.
- Q. 5 Let p and t be positive real numbers. Let D_t be the closed disc of radius t centered at (0, 0), i.e., $D_t = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le t^2\}$. Define

$$I(p,t) = \iint_{D_t} \frac{dxdy}{(p^2 + x^2 + y^2)^p}.$$

Then $\lim_{t\to\infty} I(p,t)$ is finite

(A) only if p > 1.

(C) only if p < 1.

(B) only if p = 1.

(D) for no value of p.

Q. 6 How many elements of the group \mathbb{Z}_{50} have order 10?

(A) 10 (B) 4 (C) 5 (D) 8

Q. 7 For every $n \in \mathbb{N}$, let $f_n : \mathbb{R} \to \mathbb{R}$ be a function. From the given choices, pick the statement that is the negation of

"For every $x \in \mathbb{R}$ and for every real number $\epsilon > 0$, there exists an integer N > 0 such that $\sum_{i=1}^{p} |f_{N+i}(x)| < \epsilon$ for every integer p > 0."

- (A) For every $x \in \mathbb{R}$ and for every real number $\epsilon > 0$, there does not exist any integer N > 0such that $\sum_{i=1}^{p} |f_{N+i}(x)| < \epsilon$ for every integer p > 0.
- (B) For every $x \in \mathbb{R}$ and for every real number $\epsilon > 0$, there exists an integer N > 0 such that $\sum_{i=1}^{p} |f_{N+i}(x)| \ge \epsilon$ for some integer p > 0.
- (C) There exists $x \in \mathbb{R}$ and there exists a real number $\epsilon > 0$ such that for every integer N > 0, there exists an integer p > 0 for which the inequality $\sum_{i=1}^{p} |f_{N+i}(x)| \ge \epsilon$ holds.
- (D) There exists $x \in \mathbb{R}$ and there exists a real number $\epsilon > 0$ such that for every integer N > 0and for every integer p > 0 the inequality $\sum_{i=1}^{p} |f_{N+i}(x)| \ge \epsilon$ holds.
- Q. 8 Which one of the following subsets of \mathbb{R} has a non-empty interior?
 - (A) The set of all irrational numbers in \mathbb{R} .
 - (B) The set $\{a \in \mathbb{R} : \sin(a) = 1\}$.
 - (C) The set $\{b \in \mathbb{R} : x^2 + bx + 1 = 0 \text{ has distinct roots}\}$.
 - (D) The set of all rational numbers in \mathbb{R} .
- Q. 9 For an integer $k \ge 0$, let P_k denote the vector space of all real polynomials in one variable of degree less than or equal to k. Define a linear transformation $T : P_2 \longrightarrow P_3$ by

$$Tf(x) = f''(x) + xf(x).$$

Which one of the following polynomials is not in the range of T?

(A) $x + x^2$ (B) $x^2 + x^3 + 2$ (C) $x + x^3 + 2$ (D) x + 1

MA

- Q. 10 Let n > 1 be an integer. Consider the following two statements for an arbitrary $n \times n$ matrix A with complex entries.
 - I. If $A^k = I_n$ for some integer $k \ge 1$, then all the eigenvalues of A are k^{th} roots of unity.
 - II. If, for some integer $k \ge 1$, all the eigenvalues of A are k^{th} roots of unity, then $A^k = I_n$.

Then

(A) both I and II are TRUE.

(B) I is TRUE but II is FALSE.

(C) I is FALSE but II is TRUE.

Q. 11 – Q. 30 carry two marks each.

- Q. 11 Let $M_n(\mathbb{R})$ be the real vector space of all $n \times n$ matrices with real entries, $n \ge 2$. Let $A \in M_n(\mathbb{R})$. Consider the subspace W of $M_n(\mathbb{R})$ spanned by $\{I_n, A, A^2, \ldots\}$. Then the dimension of W over \mathbb{R} is necessarily
 - (A) ∞ . (B) n^2 . (C) n. (D) at most n.
- Q. 12 Let y be the solution of

$$(1+x)y''(x) + y'(x) - \frac{1}{1+x}y(x) = 0, \ x \in (-1,\infty),$$
$$y(0) = 1, \ y'(0) = 0.$$

Then

- (A) y is bounded on $(0, \infty)$.(B) y is bounded on (-1, 0].(C) $y(x) \ge 2$ on $(-1, \infty)$.(D) y attains its minimum at x = 0.
- Q. 13 Consider the surface $S = \{(x, y, xy) \in \mathbb{R}^3 : x^2 + y^2 \le 1\}$. Let $\vec{F} = y\hat{i} + x\hat{j} + \hat{k}$. If \hat{n} is the continuous unit normal field to the surface S with positive z-component, then

equals
(A)
$$\frac{\pi}{4}$$
. (B) $\frac{\pi}{2}$. (C) π . (D) 2π .

Q. 14 Consider the following statements.

- I. The group $(\mathbb{Q}, +)$ has no proper subgroup of finite index.
- II. The group $(\mathbb{C} \setminus \{0\}, \cdot)$ has no proper subgroup of finite index.

Which one of the following statements is true?

- (A) Both I and II are TRUE. (B) I is TRUE but II is FALSE.
- (C) II is TRUE but I is FALSE. (D) Neither I nor II is TRUE.

(D) S = 3/4.

https://previouspaper.in

JAM 2021

Q. 15 Let $f : \mathbb{N} \to \mathbb{N}$ be a bijective map such that

$$\sum_{n=1}^{\infty} \frac{f(n)}{n^2} < +\infty.$$

The number of such bijective maps is

- (A) exactly one. (B) zero.
- (C) finite but more than one.

(D) infinite.

Q. 16 Define

$$S = \lim_{n \to \infty} \left(1 - \frac{1}{2^2} \right) \left(1 - \frac{1}{3^2} \right) \cdots \left(1 - \frac{1}{n^2} \right).$$

(C) *S*

Then

(A)
$$S = 1/2$$
.

Q. 17 Let $f : \mathbb{R} \to \mathbb{R}$ be an infinitely differentiable function such that for all $a, b \in \mathbb{R}$ with a < b,

$$\frac{f(b) - f(a)}{b - a} = f'\left(\frac{a + b}{2}\right).$$

Then

(A) f must be a polynomial of degree less than or equal to 2.

(B) S = 1/4.

- (B) f must be a polynomial of degree greater than 2.
- (C) f is not a polynomial.
- (D) f must be a linear polynomial.

Q. 18 Consider the function

$$f(x) = \begin{cases} 1 & \text{if } x \in (\mathbb{R} \setminus \mathbb{Q}) \cup \{0\}, \\ 1 - \frac{1}{p} & \text{if } x = \frac{n}{p}, n \in \mathbb{Z} \setminus \{0\}, p \in \mathbb{N} \text{ and } \gcd(n, p) = 1. \end{cases}$$

Then

- (A) all $x \in \mathbb{Q} \setminus \{0\}$ are strict local minima for f.
- (B) f is continuous at all $x \in \mathbb{Q}$.
- (C) f is not continuous at all $x \in \mathbb{R} \setminus \mathbb{Q}$.
- (D) f is not continuous at x = 0.
- Q. 19 Consider the family of curves $x^2 y^2 = ky$ with parameter $k \in \mathbb{R}$. The equation of the orthogonal trajectory to this family passing through (1, 1) is given by
 - (A) $x^3 + 3xy^2 = 4$. (B) $x^2 + 2xy = 3$. (D) $x^3 + 2xy^2 = 3$.

Q. 20 Which one of the following statements is true?

- (A) Exactly half of the elements in any even order subgroup of S_5 must be even permutations.
- (B) Any abelian subgroup of S_5 is trivial.
- (C) There exists a cyclic subgroup of S_5 of order 6.
- (D) There exists a normal subgroup of S_5 of index 7.
- Q. 21 Let $f: [0,1] \rightarrow [0,\infty)$ be a continuous function such that

$$(f(t))^2 < 1 + 2 \int_0^t f(s) \, ds$$
, for all $t \in [0, 1]$.

Then

(A)
$$f(t) < 1 + t$$
 for all $t \in [0, 1]$.
(B) $f(t) > 1 + t$ for all $t \in [0, 1]$.
(C) $f(t) = 1 + t$ for all $t \in [0, 1]$.
(D) $f(t) < 1 + \frac{t}{2}$ for all $t \in [0, 1]$.

- Q. 22 Let A be an $n \times n$ invertible matrix and C be an $n \times n$ nilpotent matrix. If $X = \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix}$ is a $2n \times 2n$ matrix (each X_{ij} being $n \times n$) that commutes with the $2n \times 2n$ matrix $B = \begin{pmatrix} A & 0 \\ 0 & C \end{pmatrix}$, then
 - (A) X_{11} and X_{22} are necessarily zero matrices.
 - (B) X_{12} and X_{21} are necessarily zero matrices.
 - (C) X_{11} and X_{21} are necessarily zero matrices.
 - (D) X_{12} and X_{22} are necessarily zero matrices.
- Q. 23 Let $D \subseteq \mathbb{R}^2$ be defined by $D = \mathbb{R}^2 \setminus \{(x, 0) : x \in \mathbb{R}\}$. Consider the function $f : D \to \mathbb{R}$ defined by

$$f(x,y) = x \sin \frac{1}{y}.$$

Then

- (A) f is a discontinuous function on D.
- (B) f is a continuous function on D and cannot be extended continuously to any point outside D.
- (C) f is a continuous function on D and can be extended continuously to $D \cup \{(0,0)\}$.
- (D) f is a continuous function on D and can be extended continuously to the whole of \mathbb{R}^2 .
- Q. 24 Which one of the following statements is true?
 - (A) $(\mathbb{Z}, +)$ is isomorphic to $(\mathbb{R}, +)$.
 - (B) $(\mathbb{Z}, +)$ is isomorphic to $(\mathbb{Q}, +)$.
 - (C) $(\mathbb{Q}/\mathbb{Z},+)$ is isomorphic to $(\mathbb{Q}/2\mathbb{Z},+)$.
 - (D) $(\mathbb{Q}/\mathbb{Z}, +)$ is isomorphic to $(\mathbb{Q}, +)$.

MA

Q. 25 Let y be a twice differentiable function on \mathbb{R} satisfying

$$y''(x) = 2 + e^{-|x|}, x \in \mathbb{R}$$

 $y(0) = -1, y'(0) = 0.$

Then

(A) y = 0 has exactly one root.

(B) y = 0 has exactly two roots.

(C) y = 0 has more than two roots.

(D) there exists an $x_0 \in \mathbb{R}$ such that $y(x_0) \ge y(x)$ for all $x \in \mathbb{R}$.

Q. 26 Let $f: [0,1] \to [0,1]$ be a non-constant continuous function such that $f \circ f = f$. Define

$$E_f = \{x \in [0,1] : f(x) = x\}.$$

Then

- (A) E_f is neither open nor closed.
- (C) E_f is empty.

(B) E_f is an interval.

(D) E_f need not be an interval.

- Q. 27 Let g be an element of S_7 such that g commutes with the element (2, 6, 4, 3). The number of such g is
 - (A) 6. (B) 4. (C) 24. (D) 48.

Q. 28 Let G be a finite abelian group of odd order. Consider the following two statements:

- I. The map $f: G \to G$ defined by $f(g) = g^2$ is a group isomorphism.
- II. The product $\prod_{q \in G} g = e$.
- (A) Both I and II are TRUE. (B) I is TRUE but II is FALSE.
- (C) II is TRUE but I is FALSE. (D) Neither I nor II is TRUE.

Q. 29 Let $n \ge 2$ be an integer. Let $A : \mathbb{C}^n \longrightarrow \mathbb{C}^n$ be the linear transformation defined by

$$A(z_1, z_2, \ldots, z_n) = (z_n, z_1, z_2, \ldots, z_{n-1}).$$

Which one of the following statements is true for every $n \ge 2$?

(A) A is nilpotent.

(B) All eigenvalues of A are of modulus 1.

- (C) Every eigenvalue of A is either 0 or 1.
- (D) A is singular.

Q. 30 Consider the two series

I.
$$\sum_{n=1}^{\infty} \frac{1}{n^{1+(1/n)}}$$
 and II. $\sum_{n=1}^{\infty} \frac{1}{n^{2-n^{1/2}}}$

Which one of the following holds?

- (A) Both I and II converge.
- (C) I converges and II diverges.
- (B) Both I and II diverge.
- (D) I diverges and II converges.

SECTION – B MULTIPLE SELECT QUESTIONS (MSQ)

Q. 31 – Q. 40 carry two marks each.

Q. 31 Let $f : \mathbb{R} \to \mathbb{R}$ be a function with the property that for every $y \in \mathbb{R}$, the value of the expression

$$\sup_{x \in \mathbb{R}} \left[xy - f(x) \right]$$

is finite. Define $g(y) = \sup_{x \in \mathbb{R}} [xy - f(x)]$ for $y \in \mathbb{R}$. Then

(A) g is even if f is even.

(C) g is odd if f is even.

Q. 32 Consider the equation

 $x^{2021} + x^{2020} + \dots + x - 1 = 0.$

Then

(A) all real roots are positive.

(C) exactly one real root is negative.

(B) exactly one real root is positive.

 $\frac{f(x)}{|x|}$

(D) no real root is positive.

(B) f must satisfy $\lim_{|x|\to\infty}$

(D) f must satisfy $\lim_{n \to \infty} f$

Q. 33 Let $D = \mathbb{R}^2 \setminus \{(0,0)\}$. Consider the two functions $u, v : D \to \mathbb{R}$ defined by

 $u(x,y) = x^2 - y^2$ and v(x,y) = xy.

Consider the gradients ∇u and ∇v of the functions u and v, respectively. Then

- (A) ∇u and ∇v are parallel at each point (x, y) of D.
- (B) ∇u and ∇v are perpendicular at each point (x, y) of D.
- (C) ∇u and ∇v do not exist at some points (x, y) of D.
- (D) ∇u and ∇v at each point (x, y) of D span \mathbb{R}^2 .

- Q. 34 Consider the two functions f(x, y) = x + y and g(x, y) = xy 16 defined on \mathbb{R}^2 . Then
 - (A) the function f has no global extreme value subject to the condition g = 0.
 - (B) the function f attains global extreme values at (4, 4) and (-4, -4) subject to the condition g = 0.
 - (C) the function g has no global extreme value subject to the condition f = 0.
 - (D) the function g has a global extreme value at (0,0) subject to the condition f = 0.
- Q. 35 Let $f : (a, b) \to \mathbb{R}$ be a differentiable function on (a, b). Which of the following statements is/are true?
 - (A) f' > 0 in (a, b) implies that f is increasing in (a, b).
 - (B) f is increasing in (a, b) implies that f' > 0 in (a, b).
 - (C) If $f'(x_0) > 0$ for some $x_0 \in (a, b)$, then there exists a $\delta > 0$ such that $f(x) > f(x_0)$ for all $x \in (x_0, x_0 + \delta)$.
 - (D) If $f'(x_0) > 0$ for some $x_0 \in (a, b)$, then f is increasing in a neighbourhood of x_0 .
- Q. 36 Let G be a finite group of order 28. Assume that G contains a subgroup of order 7. Which of the following statements is/are true?
 - (A) G contains a unique subgroup of order 7.
 - (B) G contains a normal subgroup of order 7.
 - (C) G contains no normal subgroup of order 7.
 - (D) G contains at least two subgroups of order 7.
- Q. 37 Which of the following subsets of \mathbb{R} is/are connected?
 - (A) The set $\{x \in \mathbb{R} : x \text{ is irrational}\}$. (B) The set $\{x \in \mathbb{R} : x^3 1 \ge 0\}$.
 - (C) The set $\{x \in \mathbb{R} : x^3 + x + 1 \ge 0\}$. (D) The set $\{x \in \mathbb{R} : x^3 2x + 1 \ge 0\}$.

Q. 38 Consider the four functions from \mathbb{R} to \mathbb{R} :

$$f_1(x) = x^4 + 3x^3 + 7x + 1$$
, $f_2(x) = x^3 + 3x^2 + 4x$, $f_3(x) = \arctan(x)$

and

$$f_4(x) = \begin{cases} x & \text{if } x \notin \mathbb{Z}, \\ 0 & \text{if } x \in \mathbb{Z}. \end{cases}$$

Which of the following subsets of \mathbb{R} are open?

- (B) The range of f_2 . (A) The range of f_1 . (D) The range of f_4 .
- (C) The range of f_3 .

Q. 39 Let V be a finite dimensional vector space and $T: V \to V$ be a linear transformation. Let $\mathcal{R}(T)$ denote the range of T and $\mathcal{N}(T)$ denote the null space $\{v \in V : Tv = 0\}$ of T. If $rank(T) = rank(T^2)$, then which of the following is/are necessarily true?

(B) $\mathcal{R}(T) = \mathcal{R}(T^2).$ (D) $\mathcal{N}(T) = \{0\}.$ (A) $\mathcal{N}(T) = \mathcal{N}(T^2).$ (C) $\mathcal{N}(T) \cap \mathcal{R}(T) = \{0\}.$

Q. 40 Let m > 1 and n > 1 be integers. Let A be an $m \times n$ matrix such that for some $m \times 1$ matrix b_1 , the equation $Ax = b_1$ has infinitely many solutions. Let b_2 denote an $m \times 1$ matrix different from b_1 . Then $Ax = b_2$ has

- (A) infinitely many solutions for some b_2 .
- (C) no solution for some b_2 .

- (B) a unique solution for some b_2 .
- (D) finitely many solutions for some b_2 .

SECTION – C NUMERICAL ANSWER TYPE (NAT)

Q. 41 – Q. 50 carry one mark each.

Q. 41 The number of cycles of length 4 in S_6 is _____.

Q. 42 The value of

$$\lim_{n \to \infty} \left(3^n + 5^n + 7^n \right)^{\frac{1}{n}}$$

is _____.

Q. 43 Let $B = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 1\}$ and define $u(x, y, z) = \sin((1 - x^2 - y^2 - z^2)^2)$ for $(x, y, z) \in B$. Then the value of

$$\iiint_{B} \left(\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} + \frac{\partial^{2} u}{\partial z^{2}} \right) dx dy dz$$

is _____

Q. 44 Consider the subset $S = \{(x, y) : x^2 + y^2 > 0\}$ of \mathbb{R}^2 . Let

$$P(x,y) = \frac{y}{x^2 + y^2}$$
 and $Q(x,y) = -\frac{x}{x^2 + y^2}$

for $(x, y) \in S$. If C denotes the unit circle traversed in the counter-clockwise direction, then the value of

$$\frac{1}{\pi} \int_C (Pdx + Qdy)$$

is ____.

- Q. 45 Consider the set $A = \{a \in \mathbb{R} : x^2 = a(a+1)(a+2) \text{ has a real root } \}$. The number of connected components of A is _____.
- Q. 46 Let V be the real vector space of all continuous functions $f : [0, 2] \to \mathbb{R}$ such that the restriction of f to the interval [0, 1] is a polynomial of degree less than or equal to 2, the restriction of f to the interval [1, 2] is a polynomial of degree less than or equal to 3 and f(0) = 0. Then the dimension of V is equal to _____.

Q. 47 The number of group homomorphisms from the group \mathbb{Z}_4 to the group S_3 is _____.

Q. 48 Let $y: \left(\frac{9}{10}, 3\right) \to \mathbb{R}$ be a differentiable function satisfying

$$(x-2y)\frac{dy}{dx} + (2x+y) = 0, \ x \in \left(\frac{9}{10}, 3\right), \text{ and } y(1) = 1.$$

Then	y(2)	equals	

Q. 49 Let $\vec{F} = (y+1)e^y \cos(x)\hat{i} + (y+2)e^y \sin(x)\hat{j}$ be a vector field in \mathbb{R}^2 and C be a continuously differentiable path with the starting point (0,1) and the end point $(\frac{\pi}{2},0)$. Then

equals	 •

Q. 50 The value of

is _____

 $\left(\frac{\pi}{8}\right)\cdots\cos\left(\frac{\pi}{2^{n+1}}\right)$ $\frac{\pi}{2}\lim_{n\to\infty}\cos\Big($

 $\int_C \vec{F} \cdot d\vec{r}$

Q. 51 – Q. 60 carry two marks each.

- Q. 51 The number of elements of order two in the group S_4 is equal to _____.
- Q. 52 The least possible value of k, accurate up to two decimal places, for which the following problem

$$y''(t) + 2y'(t) + ky(t) = 0, t \in \mathbb{R},$$

$$y(0) = 0, y(1) = 0, y(1/2) = 1,$$

has a solution is _____.

Q. 53 Consider those continuous functions $f : \mathbb{R} \to \mathbb{R}$ that have the property that given any $x \in \mathbb{R}$,

 $f(x) \in \mathbb{Q}$ if and only if $f(x+1) \in \mathbb{R} \setminus \mathbb{Q}$.

The number of such functions is _____.

Q. 54 The largest positive number a such that

$$\int_{0}^{5} f(x)dx + \int_{0}^{3} f^{-1}(x)dx \ge a$$

for every strictly increasing surjective continuous function $f:[0,\infty) \to [0,\infty)$ is _____.

Q. 55 Define the sequence

$$s_n = \begin{cases} \frac{1}{2^n} \sum_{j=0}^{n-2} 2^{2j} & \text{if } n > 0 \text{ is even,} \\ \\ \frac{1}{2^n} \sum_{j=0}^{n-1} 2^{2j} & \text{if } n > 0 \text{ is odd.} \end{cases}$$

Define $\sigma_m = \frac{1}{m} \sum_{n=1}^m s_n$. The number of limit points of the sequence $\{\sigma_m\}$ is _____.

Q. 56 The determinant of the matrix

(2021)	2020	2020	2020
2021	2021	2020	2020
2021	2021	2021	2020
(2021)	2021	2021	2021

is _____.

Q. 57 The value of

$$\lim_{n \to \infty} \int_0^1 e^{x^2} \sin(nx) \, dx$$

is ____.

Q. 58 Let S be the surface defined by

$$\{(x, y, z) \in \mathbb{R}^3 : z = 1 - x^2 - y^2, \ z \ge 0\}.$$

Let $\vec{F} = -y\hat{i} + (x-1)\hat{j} + z^2\hat{k}$ and \hat{n} be the continuous unit normal field to the surface S with positive z-component. Then the value of

is _____.
Q. 59 Let
$$A = \begin{pmatrix} 2 & -1 & 3 \\ 2 & -1 & 3 \\ 3 & 2 & -1 \end{pmatrix}$$
. Then the largest eigenvalue of A is _____.
Q. 60 Let $A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$. Consider the linear map T_A from the real vector space $M_4(\mathbb{R})$ to itself defined by $T_A(X) = AX - XA$, for all $X \in M_4(\mathbb{R})$. The dimension of the range of T_A is _____.

END OF THE QUESTION PAPER