VITEEE-2017-SAMPLE OUESTIONS

PHYSICS

1. If a force $F=\left(2 x+3 x^{2}\right) \hat{\imath} N$ acts along x-axis on an object and moves it from $x=2 \hat{\imath} m$ to $x=4 \hat{\imath} m$, the work done is
A) 24 J
B) 68 J
C) 86 J
D) 142 J
2. A vessel contains 1 mol of O_{2} and 2 mol of He . What is the value of ' $\mathrm{C}_{\mathrm{P}} / \mathrm{C}_{\mathrm{V}}$ ' of the mixture?
A) $17 / 11$
B) $71 / 45$
C) $38 / 15$
D) $46 / 15$
3. Figure shows some of the electric field lines corresponding to an electric field. The figure suggests that

A) $E_{A}>E_{B}>E_{C}$
B) $E_{A}=E_{B}=E_{C}$
C) $E_{A}=E_{C}>E_{B}$
D) $E_{A}-E_{C}<E_{B}$
4. A carbon resistor has color code as, Red, Black, Blue and Gold. The resistance and tolerance values are
A) $20 \mathrm{M} \Omega \pm 5 \%$
B) $20 \mathrm{M} \Omega \pm 10 \%$
C) $20 \mathrm{k} \Omega \pm 5 \%$
D) $20 \mathrm{k} \Omega \pm 10 \%$
5. A small circular flexible loop of wire of radius r carries a current I. It is placed in a uniform magnetic field B. The tension in the loop will be doubled if
A) I is doubled
B) B is halved
C) r is doubled
D) Both B and I are doubled
6. What is the self-inductance of a coil when a change of current from 0 to 2 A in 0.05 s induces an emf of 40 V in it?
A) 1 H
B) 2 H
C) 3 H
D) 4 H
7. A light has the wavelength $6000 \AA$ in air and $4500 \AA$ in water. Then the speed of light in water will be
A) $5.0 \times 10^{14} \mathrm{~m} / \mathrm{s}$
B) $2.25 \times 10^{8} \mathrm{~m} / \mathrm{s}$
C) $4.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$
D) $1.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$
8. In which of the following transitions in hydrogen atom will the wavelength be minimum?
A) $n=5$ to $n=4$
B) $\mathrm{n}=4$ to $\mathrm{n}=3$
C) $\mathrm{n}=3$ to $\mathrm{n}=2$
D) $\mathrm{n}=2$ to $\mathrm{n}=1$
9. One gram of Radium, with atomic weight 226, emits 4×10^{10} particles per second. The half-life of Radium is
A) $4.6 \times 10^{10} \mathrm{~s}$
B) $4.6 \times 10^{9} \mathrm{~s}$
C) $4.6 \times 10^{12} \mathrm{~s}$
D) $4.6 \times 10^{14} \mathrm{~s}$
10. The minimum number of NAND gates required to implement $A+A \bar{B}+A \bar{B} C$ is
A) 3
B) 2
C) 6
D) zero
