Q.No.

MATHEMATICS

If $G(x) = \begin{vmatrix} f(x)f(-x) & 0 & x^4 \\ 3 & f(x) - f(-x) & \cos x \\ x^4 & 2x & f(x)f(-x) \end{vmatrix}$, then $\int_{-2}^2 x^4 G(x) dx$ is equal to 1.

- A) -1

- D) 1

2. If $1, \alpha_1, \alpha_2, \alpha_3$ are the fourth roots of unity, then the value of $(1 + \alpha_1)(1 + \alpha_2)(1 + \alpha_3)$ is equal to

- A) -3
- B) -1
- C) 0
- D) 2

3. A conic has focus (1,0) and corresponding directrix x + y = 5. If the eccentricity of the conic is 2, then its equation is

- A) $x^2 + 4xy + y^2 + 18x 20y + 49 = 0$ B) $x^2 4xy + y^2 18x 20y + 49 = 0$ C) $x^2 + 4xy + y^2 18x + 20y + 49 = 0$ D) $x^2 + 4xy + y^2 18x 20y + 49 = 0$

Let \bar{u} , \bar{v} , $\bar{\omega}$ to be three vectors such that $|\bar{u}| = 1$, $|\bar{v}| = 2$, $|\bar{\omega}| = 3$ and \bar{v} and $\bar{\omega}$ are mutually perpendicular. If projection 4. of \bar{v} along \bar{u} is equal to that of $\bar{\omega}$ along \bar{u} then $|\bar{u} - \bar{v} + \bar{\omega}|$ equals to

- A) $\sqrt{7}$
- B) 14
- C) 2

A plane at a unit distance from the origin intersects the coordinate axes at P, Q and R. If the locus of the centroid of ΔPQR 5. satisfies the equation $\frac{1}{r^2} + \frac{1}{v^2} + \frac{1}{z^2} = k$, then the value of k is

- A) 3
- B) 4

If g be an inverse function of f and $f'(x) = \frac{1}{1+x^5}$, then g'(x) will be: 6.

- B) $1 + (g(x))^5$ C) $(\frac{1}{1+g(x)})^5$ D) $(g(x))^5$

7. The area enclosed between the curves $y = |x^3|$ and $x = y^3$ is

Let f(x) be a differential function such that $f'(x) = f(x) + \int_0^2 f(x) dx$ and $f(0) = \frac{(4-e^2)}{3}$. Then f(x) is: 8.

- A) $e^x \frac{(e^2 1)}{3}$ B) $e^x \frac{(e^2 1)}{4}$ C) $e^x \frac{(e^2 + 1)}{3}$ D) $e^x \frac{(4 e^2)}{3}$

9. A coin is tossed n times. The maximum value of n such that the probability of getting no head is greater than 1/16 is

- B) 3
- C) 5
- D) 2

10. Suppose 5- digit numbers are formed by the digits 1,2,3,4 and 5 without repetition. If they are arranged in an ascending order, then 100th number is

- A) 51243
- B) 51423
- C) 51234
- D) 51342