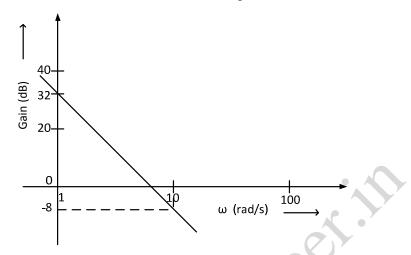

ELECTRICAL ENGINEERING - EE

Q.1 to Q.25 carry one mark each.

Q.1 The input impedance of the permanent magnet moving coil (PMMC) voltmeter is infinite. Assuming that the diode shown in the figure below is ideal, the reading of the voltmeter in Volts is



Q.2 In the feedback network shown below, if the feedback factor k is increased, then the

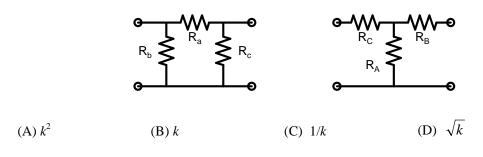
- (A) input impedance increases and output impedance decreases.
- (B) input impedance increases and output impedance also increases.
- (C) input impedance decreases and output impedance also decreases.
- (D) input impedance decreases and output impedance increases.

Q.3 The Bode plot of a transfer function G(s) is shown in the figure below.

The gain $(20 \log |G(s)|)$ is 32 dB and -8 dB at 1 rad/s and 10 rad/s respectively. The phase is negative for all ω . Then G(s) is

(A)
$$\frac{39.8}{s}$$
 (B) $\frac{39.8}{s^2}$ (C) $\frac{32}{s}$ (D) $\frac{32}{s^2}$

Q.4 A bulb in a staircase has two switches, one switch being at the ground floor and the other one at the first floor. The bulb can be turned ON and also can be turned OFF by any one of the switches irrespective of the state of the other switch. The logic of switching of the bulb resembles


(A) an AND gate (B) an OR gate (C) an XOR gate (D) a NAND gate

Q.5 For a periodic signal $v(t) = 30 \sin 100t + 10 \cos 300t + 6 \sin (500t + \pi/4)$, the fundamental frequency in rad/s is

- Q.6 A band-limited signal with a maximum frequency of 5 kHz is to be sampled. According to the sampling theorem, the sampling frequency in kHz which is not valid is
 - ()

(A) 5 (B) 12 (C) 15 (D) 20

Q.7 Consider a delta connection of resistors and its equivalent star connection as shown below. If all elements of the delta connection are scaled by a factor k, k > 0, the elements of the corresponding star equivalent will be scaled by a factor of

2013		ELECTRICAL ENGINEERING - EE
Q.8	The angle δ in the swing equation of a synchronous generator is the	

- (A) angle between stator voltage and current.
- (B) angular displacement of the rotor with respect to the stator.
- (C) angular displacement of the stator mmf with respect to a synchronously rotating axis.
- (D) angular displacement of an axis fixed to the rotor with respect to a synchronously rotating axis.
- Q.9 Leakage flux in an induction motor is
 - (A) flux that leaks through the machine
 - (B) flux that links both stator and rotor windings
 - (C) flux that links none of the windings
 - (D) flux that links the stator winding or the rotor winding but not both
- Q.10 Three moving iron type voltmeters are connected as shown below. Voltmeter readings are V, V_1 and V_2 , as indicated. The correct relation among the voltmeter readings is

$$(A) V = \frac{V_1}{\sqrt{2}} + \frac{V_2}{\sqrt{2}} \qquad (B) V = V_1 + V_2 \qquad (C) V = V_1 V_2 \qquad (D) V = V_2 - V_1$$

$$(A) V = \frac{V_1}{\sqrt{2}} + \frac{V_2}{\sqrt{2}} \qquad (B) V = V_1 + V_2 \qquad (C) V = V_1 V_2 \qquad (D) V = V_2 - V_1$$

$$(A) i, -i$$

$$(B) \cos(-\frac{\pi}{4}) + i\sin(-\frac{\pi}{4}), \cos(\frac{3\pi}{4}) + i\sin(\frac{3\pi}{4})$$

$$(C) \cos(\frac{\pi}{4}) + i\sin(-\frac{3\pi}{4}), \cos(\frac{3\pi}{4}) + i\sin(\frac{\pi}{4})$$

$$(D) \cos(\frac{3\pi}{4}) + i\sin(-\frac{3\pi}{4}), \cos(-\frac{3\pi}{4}) + i\sin(\frac{3\pi}{4})$$

$$(J) \cos(\frac{3\pi}{4}) + i\sin(-\frac{3\pi}{4}), \cos(-\frac{3\pi}{4}) + i\sin(\frac{3\pi}{4})$$

$$(J) \cos(\frac{3\pi}{4}) + i\sin(-\frac{\pi}{4}), \cos(-\frac{3\pi}{4}) + i\sin(\frac{3\pi}{4})$$

$$(J) \cos(\frac{3\pi}{4}) + i\sin(-\frac{\pi}{4}), \cos(-\frac{3\pi}{4}) + i\sin(\frac{3\pi}{4})$$

$$(J) \cos(\frac{3\pi}{4}) + i\sin(-\frac{\pi}{4}), \cos(-\frac{3\pi}{4}) + i\sin(\frac{\pi}{4})$$

$$(J) \cos(\frac{3\pi}{4}) + i\sin(-\frac{\pi}{4}), \cos(-\frac{3\pi}{4}) + i\sin(\frac{\pi}{4})$$

$$(J) \cos(\frac{\pi}{4}) + i\sin(-\frac{\pi}{4}), \cos(-\frac{\pi}{4}) + i\sin(-\frac{\pi}{4})$$

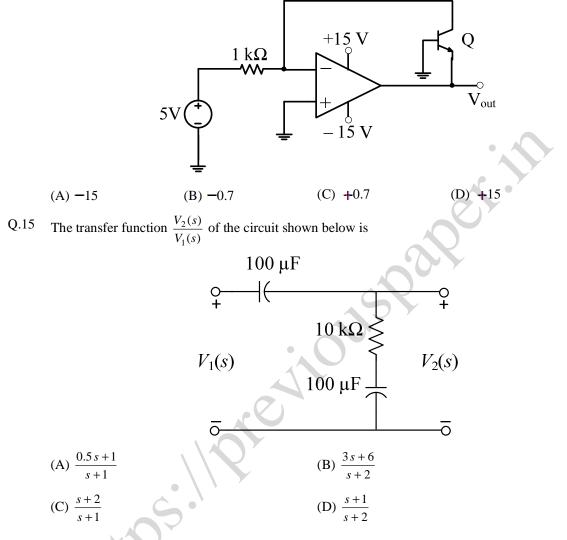
$$(J) \cos(\frac{\pi}{4}) + i\sin(-\frac{\pi}{4}), \cos(-\frac{\pi}{4}) + i\sin(-\frac{\pi}{4})$$

$$(J) \cos(\frac{\pi}{4}) + i\sin(-\frac{\pi}{4}), \cos(-\frac{\pi}{4}) + i\sin(-\frac{\pi}{4})$$

$$(J) \cos(-\frac{\pi}{4}) + i\sin(-\frac{\pi}{4}), \sin(-\frac{\pi}{4}) + i\sin(-\frac{\pi}{4})$$

$$(J) \cos(-\frac{\pi}{4}) + i\sin(-\frac{\pi}{4}), \sin(-\frac{\pi}{4}) + i\sin(-\frac{\pi}{4})$$

$$(J) \cos(-\frac{\pi}{4}) + i\sin(-\frac{\pi}{4}), \sin(-\frac{\pi}{4}) + i\sin(-\frac{\pi}{4})$$


$$(J) \cos(-\frac{\pi}{4}) + i\sin(-\frac{\pi}{4}) + i\sin(-\frac{\pi}{4})$$

$$(J) \cos(-\frac{\pi}{4}) + i\sin(-\frac{\pi}{4}), \sin(-\frac{\pi}{4}) + i\sin(-\frac{\pi}{4})$$

$$(J) \cos(-\frac{\pi}{4}) + i\sin(-\frac{\pi}{4}), \sin(-\frac{\pi}{4})$$

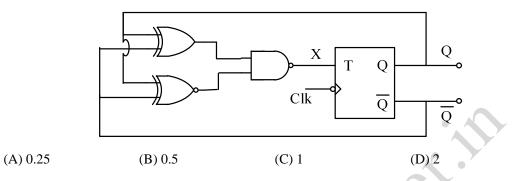
(A) -2.33 (B) 0 (C) 2.33 (D) 7

Q.14 In the circuit shown below what is the output voltage (V_{out}) in Volts if a silicon transistor Q and an ideal op-amp are used?

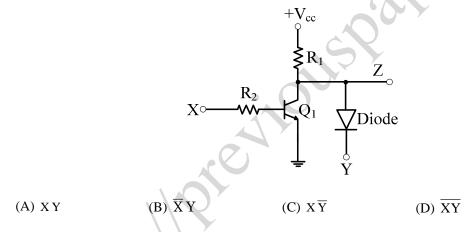
Q.16 Assuming zero initial condition, the response y(t) of the system given below to a unit step input u(t) is

$$\frac{U(s)}{s} \qquad \frac{1}{Y(s)}$$

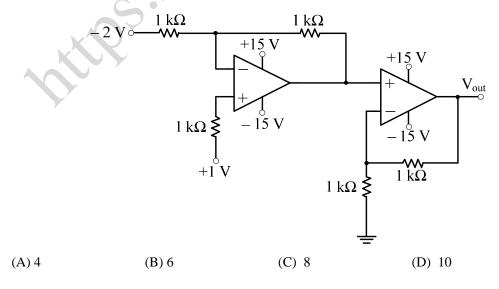
(A)
$$u(t)$$
 (B) $tu(t)$ (C) $\frac{t^2}{2}u(t)$ (D) $e^{-t}u(t)$

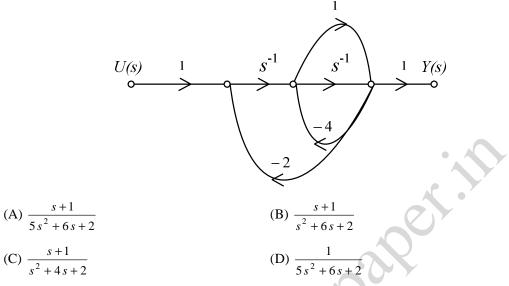

Q.17 The impulse response of a system is h(t) = t u(t). For an input u(t-1), the output is

(A)
$$\frac{t^2}{2}u(t)$$
 (B) $\frac{t(t-1)}{2}u(t-1)$ (C) $\frac{(t-1)^2}{2}u(t-1)$ (D) $\frac{t^2-1}{2}u(t-1)$

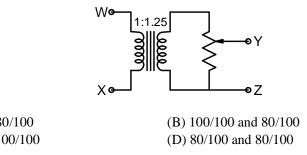

Q.18	Which one of the following st LTI system?	tatements is NOT TRUE for a con	tinuous time causal and stable
	(B) Zeros of the system can lie a(C) All the poles must lie within	s =1.	
		ristic equation must be located on the	-
Q.19	Two systems with impulse resp impulse response of the cascade	conses $h_1(t)$ and $h_2(t)$ are connected system is given by	ed in cascade. Then the overall
	(A) product of $h_1(t)$ and $h_2(t)$		
	(B) sum of $h_1(t)$ and $h_2(t)$		• •
	(C) convolution of $h_1(t)$ and $h_2(t)$	p(t)	
	-	-	
	(D) subtraction of $h_2(t)$ from $h_2(t)$	-	
Q.20		has an internal impedance of $(4 + j)$	
		extract the maximum power out of the	ne source, its value in Ω should
	be		
	(A) 3 (B) 4	(C) 5	(D) 7
Q.21		1 by a single-phase voltage source. ⁰ A and if the voltage at the load term	
	 (A) load absorbs real power and (B) load absorbs real power and (C) load delivers real power and (D) load delivers real power and 	d absorbs reactive power. d delivers reactive power.	
Q.22	short-circuit test is performed of	no-load loss of 64 W, as obtained from it with 90% of the rated currents 81 W. The transformer has maximum	flowing in its both LV and HV
	(A) 50.0% of the rated current.		
	(B) 64.0% of the rated current.	Y	
	(C) 80.0% of the rated current.(D) 88.8% of the rated current.		
Q.23		space is given by $\mathbf{B} = 4x\mathbf{a}_x + 2ky$	a + 8a Wb/m ² The value of
C	constant k must be equal to	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$	$u_y + \delta u_z + \delta \delta m$. The value of
	(A) -2 (B) -0.	5 (C) +0.5	(D) +2
Q.24			
Q.24	$P\{X > 1\}$ is	X has a probability density functio	$f(x) = e^{-x}, 0 < x < \infty.$ Then
	(A) 0.368 (B) 0.5	(C) 0.632	(D) 1.0
Q.25	The curl of the gradient of the s	calar field defined by $V = 2x^2y + 3y$	$y^{2}z + 4z^{2}x$ is
	(A) $4xy\mathbf{a}_{x} + 6yz\mathbf{a}_{y} + 8zx\mathbf{a}_{z}$		
	(B) $4\mathbf{a}_{\mathbf{x}} + 6\mathbf{a}_{\mathbf{y}} + 8\mathbf{a}_{\mathbf{z}}$		
	(C) $(4xy+4z^2)\mathbf{a}_x + (2x^2+6y)\mathbf{a}_y$	$(x_2) = +(3y^2 + 8zy) =$	
	() ($(\mathbf{y} + \mathbf{y}) \mathbf{a}_{\mathbf{y}} + (\mathbf{y} + \mathbf{y}) \mathbf{a}_{\mathbf{z}}$	
	(D) 0		

Q.26 to Q.55 carry two marks each.

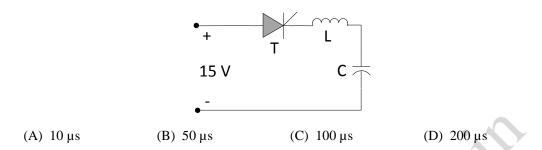

Q.26 The clock frequency applied to the digital circuit shown in the figure below is 1 kHz. If the initial state of the output Q of the flip-flop is '0', then the frequency of the output waveform Q in kHz is


Q.27 In the circuit shown below, Q_1 has negligible collector-to-emitter saturation voltage and the diode drops negligible voltage across it under forward bias. If V_{cc} is +5 V, X and Y are digital signals with 0 V as logic 0 and V_{cc} as logic 1, then the Boolean expression for Z is

Q.28 In the circuit shown below the op-amps are ideal. Then V_{out} in Volts is

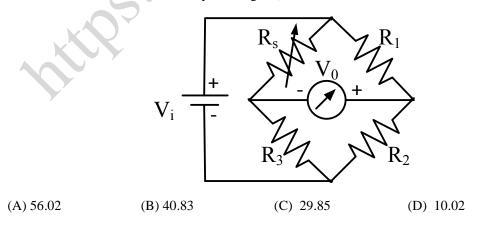

The signal flow graph for a system is given below. The transfer function $\frac{Y(s)}{U(s)}$ for this system is Q.29

- Q.30 The impulse response of a continuous time system is given by $h(t) = \delta(t-1) + \delta(t-3)$. The value of the step response at t = 2 is
 - (C) 2 (A) 0 **(B)** 1 (D) 3
- Q.31 Two magnetically uncoupled inductive coils have Q factors q_1 and q_2 at the chosen operating frequency. Their respective resistances are R_1 and R_2 . When connected in series, their effective Q factor at the same operating frequency is

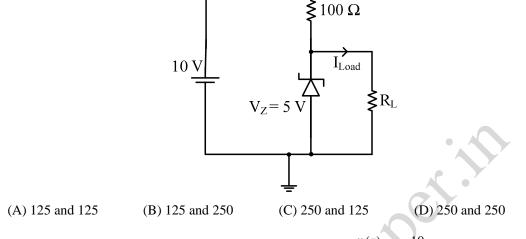

(A)
$$q_1R_1 + q_2R_2$$

(B) $q_1/R_1 + q_2/R_2$
(C) $(q_1R_1 + q_2R_2)/(R_1 + R_2)$
(D) $q_1R_2 + q_2R_1$

The following arrangement consists of an ideal transformer and an attenuator which attenuates Q.32 by a factor of 0.8. An ac voltage $V_{WX1} = 100V$ is applied across WX to get an open circuit voltage $V_{\rm YZ1}$ across YZ. Next, an ac voltage $V_{\rm YZ2}$ = 100V is applied across YZ to get an open circuit voltage V_{WX2} across WX. Then, V_{YZ1} / V_{WX1} , V_{WX2} / V_{YZ2} are respectively,

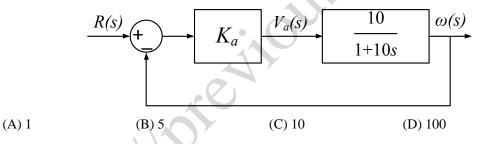

(A) 125/100 and 80/100 (C) 100/100 and 100/100

Q.33 Thyristor T in the figure below is initially off and is triggered with a single pulse of width 10 µs. It is given that $L = \left(\frac{100}{\pi}\right) \mu$ H and $C = \left(\frac{100}{\pi}\right) \mu$ F. Assuming latching and holding currents of the thyristor are both zero and the initial charge on C is zero, T conducts for

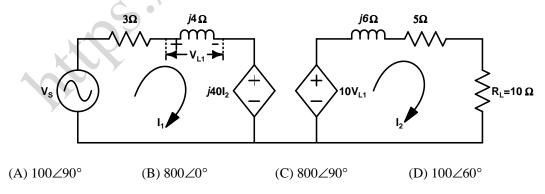


- Q.34 A 4-pole induction motor, supplied by a slightly unbalanced three-phase 50 Hz source, is rotating at 1440 rpm. The electrical frequency in Hz of the induced negative sequence current in the rotor is
 - (A) 100 (B) 98 (C) 52 (D) 48
- Q.35 A function $y = 5x^2 + 10x$ is defined over an open interval x = (1, 2). At least at one point in this interval, $\frac{dy}{dx}$ is exactly (A) 20 (B) 25 (C) 30 (D) 35
- Q.36 When the Newton-Raphson method is applied to solve the equation $f(x) = x^3 + 2x 1 = 0$, the solution at the end of the first iteration with the initial guess value as $x_0 = 1.2$ is

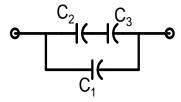
Q.37 A strain gauge forms one arm of the bridge shown in the figure below and has a nominal resistance without any load as $R_s = 300 \Omega$. Other bridge resistances are $R_1 = R_2 = R_3 = 300 \Omega$. The maximum permissible current through the strain gauge is 20 mA. During certain measurement when the bridge is excited by maximum permissible voltage and the strain gauge resistance is increased by 1% over the nominal value, the output voltage V₀ in mV is



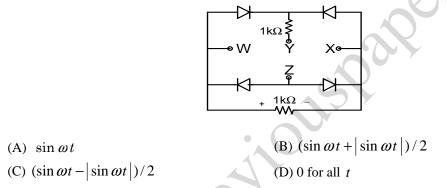
Q.38 In the circuit shown below, the knee current of the ideal Zener diode is 10 mA. To maintain 5 V across R_L , the minimum value of R_L in Ω and the minimum power rating of the Zener diode in mW respectively are



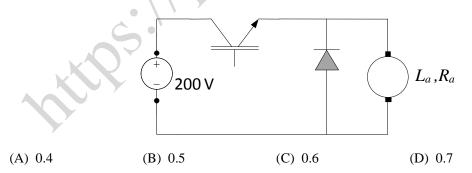
Q.39 The open-loop transfer function of a dc motor is given as $\frac{\omega(s)}{V_a(s)} = \frac{10}{1+10s}$. When connected in


feedback as shown below, the approximate value of K_a that will reduce the time constant of the closed loop system by one hundred times as compared to that of the open-loop system is

Q.40 In the circuit shown below, if the source voltage $V_s = 100 \angle 53.13^\circ$ V then the Thevenin's equivalent voltage in Volts as seen by the load resistance R_L is



Q.41 Three capacitors C_1 , C_2 , and C_3 , whose values are 10μ F, 5μ F, and 2μ F respectively, have breakdown voltages of 10V, 5V, and 2V respectively. For the interconnection shown, the maximum safe voltage in Volts that can be applied across the combination and the corresponding total charge in μ C stored in the effective capacitance across the terminals are respectively



(A) 2.8 and 36	(B) 7 and 119
(C) 2.8 and 32	(D) 7 and 80

Q.42 A voltage $1000 \sin \omega t$ Volts is applied across YZ. Assuming ideal diodes, the voltage measured across WX in Volts is

Q.43 The separately excited dc motor in the figure below has a rated armature current of 20 A and a rated armature voltage of 150 V. An ideal chopper switching at 5 kHz is used to control the armature voltage. If $L_a = 0.1$ mH, $R_a = 1 \Omega$, neglecting armature reaction, the duty ratio of the chopper to obtain 50% of the rated torque at the rated speed and the rated field current is

Q.44 For a power system network with *n* nodes, Z_{33} of its bus impedance matrix is *j*0.5 per unit. The voltage at node 3 is $1.3 \angle -10^{\circ}$ per unit. If a capacitor having reactance of -j3.5 per unit is now added to the network between node 3 and the reference node, the current drawn by the capacitor per unit is

(A) $0.325 \angle -100^{\circ}$ (B) $0.325 \angle 80^{\circ}$ (C) $0.371 \angle -100^{\circ}$ (D) $0.433 \angle 80^{\circ}$

2013

(D) 2+2i

Q.45 A dielectric slab with 500 mm × 500 mm cross-section is 0.4 m long. The slab is subjected to a uniform electric field of $\mathbf{E} = 6 \mathbf{a}_x + 8 \mathbf{a}_y$ kV/mm. The relative permittivity of the dielectric material is equal to 2. The value of constant ε_0 is 8.85×10^{-12} F/m. The energy stored in the dielectric in Joules is (A) 8.85×10^{-11} (B) 8.85×10^{-5} (C) 88.5 (D) 885

Q.46 A matrix has eigenvalues -1 and -2. The corresponding eigenvectors are $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$ respectively. The matrix is

$$(A)\begin{bmatrix}1&1\\-1&-2\end{bmatrix} \qquad (B)\begin{bmatrix}1&2\\-2&-4\end{bmatrix} \qquad (C)\begin{bmatrix}-1&0\\0&-2\end{bmatrix} \qquad (D)\begin{bmatrix}0&1\\-2&-3\end{bmatrix}$$

(C) $2 + \pi$

Q.47 $\int \frac{z^2 - 4}{z^2 + 4} dz$ evaluated anticlockwise around the circle |z - i| = 2, where $i = \sqrt{-1}$, is

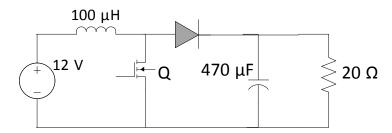
(A) -4π (B) 0

Common Data Questions

Common Data for Questions 48 and 49:

The state variable formulation of a system is given as

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u, \quad x_1(0) = 0, \quad x_2(0) = 0 \text{ and } y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

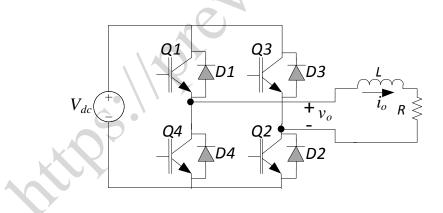

Q.48 The system is

- (A) controllable but not observable
- (B) not controllable but observable
- (C) both controllable and observable
- (D) both not controllable and not observable
- Q.49 The response y(t) to a unit step input is

(A)
$$\frac{1}{2} - \frac{1}{2}e^{-2t}$$
 (B) $1 - \frac{1}{2}e^{-2t} - \frac{1}{2}e^{-t}$
(C) $e^{-2t} - e^{-t}$ (D) $1 - e^{-t}$

Common Data for Questions 50 and 51:

In the figure shown below, the chopper feeds a resistive load from a battery source. MOSFET Q is switched at 250 kHz, with a duty ratio of 0.4. All elements of the circuit are assumed to be ideal.


- Q.50 The average source current in Amps in steady-state is
 - (A) 3/2 (B) 5/3 (C) 5/2 (D) 15/4
- Q.51 The PEAK-TO-PEAK source current ripple in Amps is

(II) 0.70 (D) 0.177 (C) 0.172 (D) 0.20	(A) 0.96	(B) 0.144	(C) 0.192	(D) 0.288
---	----------	-----------	-----------	-----------

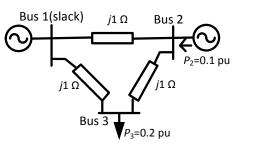
Linked Answer Questions

Statement for Linked Answer Questions 52 and 53:

The Voltage Source Inverter (VSI) shown in the figure below is switched to provide a 50 Hz, square-wave ac output voltage (v_o) across an R-L load. Reference polarity of v_o and reference direction of the output current i_o are indicated in the figure. It is given that $R = 3 \Omega$, L = 9.55 mH.

Q.52 In the interval when $v_0 < 0$ and $i_0 > 0$ the pair of devices which conducts the load current is

$(1) Q_1, Q_2$ $(D) Q_2, Q_1$ $(C) D_1, D_2$ $(D) D_2, L$	(A) Q1, Q2	(B) Q3, Q4	(C) D1, D2	(D) D3, D
---	------------	------------	------------	-----------


Q.53 Appropriate transition i.e., Zero Voltage Switching (ZVS)/Zero Current Switching (ZCS) of the IGBTs during turn-on/turn-off is

(A) ZVS during turn-off	
(C) ZCS during turn-off	

(B) ZVS during turn-on(D) ZCS during turn-on

Statement for Linked Answer Questions 54 and 55:

In the following network, the voltage magnitudes at all buses are equal to 1 p.u., the voltage phase angles are very small, and the line resistances are negligible. All the line reactances are equal to $j1 \Omega$.

- Q.54 The voltage phase angles in rad at buses 2 and 3 are
 - (A) $\theta_2 = -0.1$, $\theta_3 = -0.2$
 - (B) $\theta_2 = 0, \ \theta_3 = -0.1$
 - (C) $\theta_2 = 0.1, \ \theta_3 = 0.1$
 - (D) $\theta_2 = 0.1, \ \theta_3 = 0.2$
- Q.55 If the base impedance and the line-to-line base voltage are 100Ω and 100 kV, respectively, then the real power in MW delivered by the generator connected at the slack bus is

(A) –10 **(B)** 0 (C) 10 (D) 20

2013				ELECTRICAL ENGINEERING - EE
	cal Aptitude (GA to Q.60 carry on			
Q.56	Complete the sente			
	(A) commit	(B) to commit	(C) committed	(D) committing
Q.57		ed not to quarrel with of following options is the c		word quarrel ?
	(A) make out	(B) call out	(C) dig out	(D) fall out
Q.58		an always give me a ring following is the best infe		tement?
	(B) Because I have(C) Because a friend	e a nice caller tune. e a better telephone facili nd in need is a friend ind eed not pay towards the	eed.	ı give me a ring.
Q.59	and of Tuesday to		he temperature on Thurs	nday to Wednesday was 41°C day was 15% higher than that of
	(A) 40	(B) 43	(C) 46	(D) 49
Q.60	Choose the gramm	natically CORRECT ser	ntence:	
	(A) Two and two a(B) Two and two b(C) Two and two a(D) Two and two n	become four.		
Q.61	to Q.65 carry tw	o marks each.		
Q.61	The set of values of	of p for which the roots o	of the equation $3x^2+2x+p$	(p-1) = 0 are of opposite sign is
	(A) (-∞, 0)	(B) (0, 1)	(C) (1, ∞)	(D) $(0, \infty)$
Q.62	What is the chance that a leap year, selected at random, will contain 53 Saturdays?			
	(A) 2/7	(B) 3/7	(C) 1/7	(D) 5/7
Q.63	Find the sum to <i>n</i>	terms of the series 10+84	1+734 +	
	(A) $\frac{9(9^{n}+1)}{10} + 1$ (B) $\frac{9(9^{n}-1)}{8} + 1$			
	(C) $\frac{9(9^n - 1)}{8} + n$			
	(D) $\frac{9(9^n-1)}{8} + n^2$:		

2013				ELECTRICAL ENGINEERING - EE
Q.64		re were different strear als, radicals, socialists,		ts in colonial India carried out by the
	Which one of th	e following is the best	inference from the above	e statement?
	(B) Nationalism(C) Nationalism			
Q.65			of an hour, 6 km in the s h km per hour over the en	econd quarter and 16 km in the third ntire journey is
	(A) 30	(B) 36	(C) 40	(D) 24
				APER