1. A rain drop of mass 0.1 g is falling with uniform speed of $10 \mathrm{~cm} / \mathrm{s}$. What is the net weight of the drop? [$\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$]
A) 0 N
B) $2 \times 10^{-3} \mathrm{~N}$
C) $10^{-2} \mathrm{~N}$
D) $10^{-3} \mathrm{~N}$
2. The equation of state corresponding to 8 g of O_{2} (assume ideal gas) is
A) $\mathrm{PV}=8 \mathrm{RT}$
B) $\mathrm{PV}=\mathrm{RT} / 4$
C) $\mathrm{PV}=\mathrm{RT} / 2$
D) $\mathrm{PV}=\mathrm{RT} / 8$
3. Two very large sheets of plastic are facing each other with a distance 'd' between them. By rubbing them with wool and silk, the sheet on the left gets a uniform surface charge density $\mathrm{n}_{1}=-\mathrm{n}_{0}$ and the other sheet on the right gets $n_{2}=3 n_{0}$, where $n_{0}>0$. What is the magnitude and direction of the electric field in the region between the two sheets?
A) $\mathrm{n}_{0} / \varepsilon_{0}$, left
B) $\mathrm{n}_{0} / \varepsilon_{0}$, right
C) $2 \mathrm{n}_{0} / \varepsilon_{0}$, left
D) $2 \mathrm{n}_{0} / \varepsilon_{0}$, right
4. The wire in the potentiometer has a resistance of R_{0} and the potentiometer is connected to a battery of voltage ' V '. Now a resistor ' R ' whose value of resistance has to be measured is connected. When the sliding point is exactly in the middle of the potentiometer, the voltage drop across ' R ' is $\mathrm{V} / 4$. What is the value of $\mathrm{R} / \mathrm{R}_{0}$?
A) $1 / 4$
B) 4
C) 2
D) $1 / 2$
5. A charge of 1 C is placed at one end of a non-conducting rod of radius 0.4 m . The rod is rotated in a vertical plane about a horizontal axis passing through the other end of the rod with an angular frequency $2 \pi \times 10^{4} \mathrm{rad} / \mathrm{sec}$. The magnetic field at a point on the axis of rotation at a distance 1 m from the center of the path is
A) $5.75 \times 10^{-5} \mathrm{~T}$
B) $6.88 \times 10^{-5} \mathrm{~T}$
C) $7.25 \times 10^{-5} \mathrm{~T}$
D) $8.08 \times 10^{-5} \mathrm{~T}$
6. In an LCR series circuit, the voltage across each of the components L, C and R is 50 V . The voltage across the LC combination will be
A) 50 V
B) 10 V
C) 0 V
D) 30 V
7. A convex meniscus lens is made from glass with refractive index $n=1.52$. If the radius of curvature of the convex surface is 20 cm and that of the concave surface is 40 cm , then find out the focal length.
A) 129 cm
B) 94 cm
C) 80 cm
D) 113 cm
8. The work function of cesium is 2.14 eV . The threshold frequency for cesium is
A) $5.16 \times 10^{14} \mathrm{~Hz}$
B) $3.20 \times 10^{14} \mathrm{~Hz}$
C) $2.14 \times 10^{14} \mathrm{~Hz}$
D) $6.50 \times 10^{14} \mathrm{~Hz}$
9. The half life of radium is 1600 years. After how many years 25% of a radium block will remain undecayed?
A) 3200 years
B) 1500 years
C) 2000 years
D) 5200 years
10. Intrinsic Si at 300 K has equal electron $\left(n_{e}\right)$ and hole $\left(n_{h}\right)$ concentrations of $1.5 \times 10^{16} \mathrm{~m}^{-3}$. Doping by indium increases n_{h} to $4.5 \times 10^{22} \mathrm{~m}^{-3}$. The value of n_{e} in the doped Si is
A) $5.0 \times 10^{9} \mathrm{~m}^{-3}$
B) $1.0 \times 10^{9} \mathrm{~m}^{-3}$
C) $8.0 \times 10^{9} \mathrm{~m}^{-3}$
D) $4.0 \times 10^{9} \mathrm{~m}^{-3}$
