(Common to all Candidates)

- 1. If I is the unit matrix of order n, Where $K \neq 0$ is a constant then adj(KI) =

 - a) $K^n(adjI)$ b) $K^{n-1}(adjI)$ c) $K^2(adjI)$

- 2. The equation $\begin{vmatrix} 2x & 0 & 0 \\ x+2 & x+1 & 0 \end{vmatrix} = 0$ has the solution
 - a) x = -1, -2, -3 b) $x = 0, -1, \pm i$ c) x = -2, -3

- 3. If $\rho(A) = \rho(A, B)$ then the system is
 - a) Consistent and has infinitely many solution
 - b) Consistent and has unique solution
 - c) Consistent
 - d) Inconsistent

$$\begin{vmatrix} \cos\frac{\pi}{12} + i\sin\frac{\pi}{12} & 0 & 0 \\ 0 & \cos\frac{\pi}{6} + i\sin\frac{\pi}{6} & 0 \\ 0 & 0 & \cos\frac{\pi}{8} + i\sin\frac{\pi}{8} \end{vmatrix} = \underline{\qquad \qquad }$$
b) $\frac{1+i}{\sqrt{2}}$ c) $\frac{-1+i}{\sqrt{2}}$ d) $\frac{1-i}{\sqrt{2}}$

- 4. The value of

- 5. If A is square matrix then A A' + A'A is a
 - a) Unit Matrix
- b) Null Matrix c)Symmetric Matrix d)Skew Symmetric Matrix
- 6. If \vec{a} and \vec{b} are unit vectors having opposite directions, which one of the following is

true?

- a) $\vec{a} \cdot \vec{b} = 1$ b) $\vec{a} \cdot \vec{b} = 0$ c) $\vec{a} \times \vec{b} = 0$

7.	If \vec{a} and \vec{b} unit vector		unit vectors	and θ is the angle	between t hatps!//c	vrek∳ioŪspiaper.in
	a) $\theta = \frac{\pi}{4}$		b) $\theta = \frac{\pi}{2}$	c) $\theta = \frac{\pi}{3}$	d) θ	$=\frac{2\pi}{3}$
8.	The angle l	oetween 1	the planes x -	+ y + z = 10 and z as	xis is	

9. If
$$\vec{a}$$
 is any vector, the value of $|\vec{a} \times \vec{i}|^2 + |\vec{a} \times \vec{j}|^2 + |\vec{a} \times \vec{k}|^2$ is ______

d)0

- 10. If |z-z| |z-z| then the locus of z is
- 10. If $|z z_1| = |z z_2|$ then the locus of z is
 - a) a circle with centre at the origin
 b) a circle with centre at z₁

a) a^2 b) $2a^2$ c) $3a^2$

- c) a straight line passing through the origin
- d) a perpendicular bisector of the line joining z_1 and z_2

11. If
$$\frac{1+x}{1-x} = \cos 2\theta + i \sin 2\theta$$
, then x is equal to

- a) $i \tan \theta$ b) $i \tan 2\theta$ c) $i \cot \theta$ 12. Which of the following is incorrect?
 - Which of the following is incorrect? a) $|z_1 + z_2| \le |z_1| + |z_2|$ b) $|z_1 + z_2| \ge |z_1| + |z_2|$
 - c) $|z_1 z_2| \le |z_1| + |z_2|$ d) $|z_1 z_2| \ge |z_1| |z_2|$

14. The point of contact of the tangent y = mx + c and the parabola $y^2 = 4ax$ is

a)
$$\left(\frac{a}{m^2}, \frac{2a}{m}\right)$$
 b) $\left(\frac{2a}{m^2}, \frac{a}{m}\right)$ c) $\left(\frac{a}{m}, \frac{2a}{m^2}\right)$ d) $\left(\frac{-a}{m^2}, \frac{-2a}{m}\right)$

15. The curve with parametric equation $x = 1 + 4\cos\theta$, $y = 2 + 3\sin\theta$ is _____

a) a circle b)a parabola c)an ellipse d)a hyperbola

d) $i \cot 2\theta$

16. The intercept cut	off by the plane $2x + \frac{1}{2}$	y - z = 5 with the ax	kes is https://previou	uspaper.in
a) $\frac{2}{5}, \frac{1}{5}, \frac{-1}{5}$	b) $\frac{5}{2}, \frac{1}{5}, -5$	c) 2,1,-1	d) -2,-1,1	
17. The condition that t	the line $lx + my + n = 0$	may be a normal to	the hyperbola $\frac{x^2}{a^2}$ –	$\frac{y^2}{b^2} = 1$
is				
a) $al^3 + 2alm^2 + m$	$^{2}n=0$	b) $\frac{a^2}{l^2} + \frac{b^2}{m^2} = \frac{(a^2)^2}{m^2}$	$\frac{(a+b^2)^2}{n^2}$	
c) $\frac{a^2}{l^2} + \frac{b^2}{m^2} = \frac{(a^2 - b^2)^2}{m^2}$	$\frac{(b^2)^2}{a^2} \qquad \qquad d$	$\frac{a^2}{l^2} - \frac{b^2}{m^2} = \frac{(a^2 + \frac{b^2}{m^2})}{n^2}$	$(b^2)^2$	
18. The hyperbola w	ith foci at (0,-1),(0,3) a	and one vertex at the	e origin is	
a) $3y^2 - x^2 - 6y = 0$	0 b	$3x^2 - y^2 + 6x = 0$		
c) $3x^2 - y^2 + 6y = 0$) d)	$3x^2 - y^2 - 6x = 0$		
$19. \ x = x_0 \text{ is a root o}$	f even for the equation	f'(x) = 0 then $x =$	x_0 is a	
a) Maximum point	b) Minimum j			Critical
point		157		
20. The area of the	largest rectangle that	can be inscribed	in the ellipse $\frac{x^2}{a^2}$ +	$\frac{y^2}{b^2} = 1$
is		Y		
a) ab	b) a^2b^2	c)2ab	d) $\sqrt{2}ab$	
21. If the length of t	he diagonal of a squar	e is increasing at the	ne rate of 0.2m/sec, v	what is
the rate of increa	ase of its area when the	side is $\frac{30}{\sqrt{2}}$ cm?		
a) $3 \text{ cm}^2/\text{sec}$	$6\sqrt{2} \text{ cm}^2/\text{sec} \qquad c)$	$3\sqrt{2}$ cm ² /sec	d) $6 \text{ cm}^2/\text{sec}$	
22. In the law of mea	ın, the value of 'θ 'sati	sfies the condition		
a) $\theta > 0$	b) $\theta < 0$	c) $\theta < 1$ d)	$0 < \theta < 1$	
23. If there is an err	or of 0.01 cm in the di	ameter of sphere wi	hen its radius is 5 cm	, then
the percentage em	or in its surface area i	S		
a) 0.1 % b) 0.2	2 % c) 0.02 % d) 2.0	0 %		
24. In which region t	he curve $y^2(a+x) =$	$x^2(3a-x)$		
	and $x > 3a$ c) -a <			
	$y^3 = 3axy$ is symmet		.	
a) a) $x = 0$ b)	y=0 c) both axis d)	y=x		

26. $\int_0^a f(x)dx + \int_0^a f(2a-x)dx =$ _____

https://previouspaper.in

a) $\int_0^a f(x)dx$ b) $2\int_0^a f(x)dx$ c) $\int_0^{2a} f(x)dx$ d) $\int_0^{2a} f(a-x)dx$

27. $\int_{-1}^{0} |x+1| dx$ is

b) $\frac{1}{2}$

c) 2

d) -2

28. The volume of the solid obtained when the area between the line joining the points

(0,0) and (2, 3) and x—axis is rotated about x-axis is _____

 2π a)

b) 4π 8π

d) 6π

29. The area between the parabolas $y^2 = 16x$ and the line y =x is ___

a) $\frac{442}{3}$

b) $\frac{441}{3}$ c) $\frac{128}{3}$ d) $\frac{256}{3}$

30. The differential equation formed by eliminating A and B from the relation

a) y'' - 2y' - 10y = 0 b) y'' - 2y' + 10y = 0 c) y'' + 2y' + 10y = 0d) y'' + 2y' - 10y = 031. If $y = e^{-4x} (A \cos 3x + B \sin 3x)$ then

a) $(D^2 - D - 12)y = 0$ b) $(D^2 + 8D + 25)y = \cos 3x + \sin 3x$

c) $(D^2 + 8D + 25) y = 0$ d) $(D^2 - 8D + 25) y = e^{-4x}$

32. The differential equation satisfied by the all straight in xy plane is _____

a) $\frac{dy}{dx}$ = a constant b) $\frac{d^2y}{dx^2}$ = 0 c) $y + \frac{dy}{dx}$ = 0 d) $\frac{d^2y}{dx^2} + y = 0$

33. The particular integral of $\frac{d^2y}{dx^2} + 9y = 1 + \sin 3x$ is _____

a) $\frac{-x\cos 3x}{6} + \frac{1}{9}$ b) $\frac{x\sin 3x}{6}$ c) $\frac{-x\cos 3x}{6} + \frac{1}{10}$ d) $\frac{x\cos 3x}{6} + 9$

34. If $x \frac{dy}{dx} = y (\log y - \log x + 1)$ then the solution of the equation is

a) $x \log \frac{y}{x} = cy$ b) $y \log \frac{x}{y} = cx$ c) $\log \frac{x}{y} = cy$ d) $\log \frac{y}{x} = cx$

35. The complementary function of differential equation $(D^2 - 1) y = \cos x$ is

a) $Ae^{x} + Be^{-x}$ b) $Ae^{-x} + Be^{-x}$ c) $Ae^{2x} + Be^{-2x}$ d) $Ae^{x} + Be^{x}$

36. The particular integral of the differential equation $(D^3 + 1)$ y = x is

a) x b) -x c) 2x d) $\frac{x}{2}$

37.	An element o	of order 2 in the	$group(C-\{0\})$	0},•) is	— https://previouspaper.in			
	a) 1-i	b) 2+i	c) $e^{i\pi}$	$d)\frac{2-i}{\sqrt{3}}$				
38.	The set $G =$	$\{1,\omega,\omega^2\}$ o	f all the cube r	oots of unity fo	rms an abelian group with			
	respect to mul	Itiplication. The	en the inverse o		$-\omega^7$ is			
	a) $-(1+\omega)$	b^{2}) b) -($(1+\omega)$	c) <i>W</i>	d) $-\omega$			
39.	If a,b,c are	any three elei	ments of the	group $(G,*)$ a	nd (a*b)*x = c then			
	x =			, ,				
	a) $c * (a^{-1})$	$*b^{-1}$)	b) $c * (b^{-1} *$	$*a^{-1}$)	c) $(a^{-1} * b^{-1}) * c$			
		$(a^{-1})*c$						
40.	In congruence	e modulo5, $x \in$	$\equiv Z/x = 5k$	$+4, k \in z$ } re	presents			
			c) [4]					
41. If $f(x) = k \sin \frac{\pi x}{5}$, $0 \le x \le 5$ is a p.d.f. then the value of $k = \underline{\hspace{1cm}}$.								
	a) $\frac{2\pi}{5}$	b) $\frac{3\pi}{10}$	c) $\frac{\pi}{10}$	d) $\frac{\pi}{5}$				
42.	42. In a Poisson distribution if standard deviation is $\sqrt{2}$ then $P(X \ge 1)$ is							
	a) $1 - e^{-2}$	b) 1+e	c) $1 - e^2$	d) $1 - e^{-1}$				
43. A die is thrown 100 times. If getting an odd number is success, then the variance of								
	the number of	success is	·					
	a) 50	b) 40		d) 20				
44. If 2 cards are drawn from a well shuffled pack of 52 cards, the probability that they								
	are of the same colours with replacement is							
	1	25	26	25				
	a) ${2}$	b) ${51}$	c) $\frac{26}{51}$	$\frac{d}{102}$				

45. The binomial distribution have the mean

a) n²p

b)np

c) npq

d) np²