

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAXNo.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

Toll Free: 1800 258 5555
7340010333
Theobox com/Reconscretal
**Twitter: cany Resonance.ac.in | CIN: U80302RJ2007PLC024029

Toll Free: 1800 258 5555
7340010333
Theobox com/Reconscretal
**Twitter: cany Resonance.ac.in | CIN: U80302RJ2007PLC024029

This solution was download from Resonance JEE (MAIN) 2022 Solution porta

PART: PHYSICS

1. Three point charges are placed at corners of a square as shown in figure. Find electric field at point B.

(1)
$$\frac{2kq}{a^2} \left(\frac{1}{\sqrt{2}} + \frac{1}{2} \right)$$
 (2) $\frac{kq}{a^2} \left(\frac{1}{\sqrt{2}} + 2 \right)$

(2)
$$\frac{kq}{a^2} \left(\frac{1}{\sqrt{2}} + 2 \right)$$

(3)
$$\frac{kq}{a^2} \left(\frac{1}{\sqrt{2}} + 1 \right)$$

(3)
$$\frac{kq}{a^2} \left(\frac{1}{\sqrt{2}} + 1 \right)$$
 (4) $\frac{kq}{a^2} \left(\frac{1}{\sqrt{2}} + \frac{1}{2} \right)$

Ans. Sol.

$$E = E_1 \cos 45^\circ + E_3 \cos 45^\circ + E_2$$

$$= \frac{kq/2}{a^2} \times \frac{1}{\sqrt{2}} + \frac{kq/2}{a^2} \times \frac{1}{\sqrt{2}} + \frac{kq}{2a^2}$$

$$E = \frac{kq}{a^2} \left(\frac{1}{\sqrt{2}} + \frac{1}{2} \right)$$

Rigid Body

Moment of inertia

- (A) MOI of solid sphere about its tangent
- (p) $\frac{1}{2}$ MR²
- (B) MOI of hollow sphere about its diameter
- (C) MOI of disc about its diameter
- (D) MOI of ring about its diameter
- (s) $\frac{7}{5}$ MR ²

- (1) A-s, B-r, C-q, D-p (2) A-r, B-s, C-q, D-p
- (3) A-s, B-r, C-p, D-q
 - (4) A-p, B-r, C-s, D-q

Ans.

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

Toll Free: 1800 258 5555
7340010333
4 sector confried contact@ with the confried contact of t

This solution was download from Resonance JEE (MAIN) 2022 Solution portal

PAGE#1

RESONANCE | JEE MAIN-2022 | DATE : 28-06-2022 (SHIFT-1) | PAPER-1 | MEMORY BASED | PHYSICS

A particle having mass m is moving along a circle with radius r. centripetal acceleration varies as.

ac = k2. r. t2. Find power delivered :

- (3) m. k. r2 t

Ans.

Sol.

$$v^2 = k^2$$
. r^2 . t^2

$$a_t = \frac{dv}{dt} = k.r$$

power = $\vec{F}.\vec{v}$

https://previouspaper.in

https://previouspaper.in

- 4. Relation between time period of two satellites is TA = 2TB. Find ratio between radii of orbits
 - (1) 41/3
- (2) 21/3
- $(3) 3^{1/3}$
- (4) 42/3

Ans. (1)

Sol. T ∝ r^{3/2}

$$\frac{T_A}{T_B} = \left(\frac{r_A}{r_B}\right)^{3/2}$$

$$2 = \left(\frac{r_A}{r_B}\right)^{3/2} \Rightarrow \frac{r_A}{r_B} = 4^{1/3}$$

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PtC024029

Toll Free: 1800 258 5555
 7340010333
 sections com/Resonancedds www.youtube.com/resonance.ac.in | CiN: U80302RJ2007PtC024029

**Toll Free: 1800 258 5555
 7340010333
 sections com/Resonancedds www.youtube.com/resonance.ac.in | CiN: U80302RJ2007PtC024029

This solution was download from Resonance JEE (MAIN) 2022 Solution portal

PAGE#2

Resonance | JEE MAIN-2022 | DATE : 28-06-2022 (SHIFT-1) | PAPER-1 | MEMORY BASED | PHYSICS

5. Current i is flowing in a long thin hollow cylinder. Choose correct graph between magnetic field verses

Ans. (1)

Sol. B = O, r < R

 $\frac{\mu_0}{2\pi} \frac{i}{r}, r \ge R$

6. Equation of two SHMs are

$$x = 4 \sin \left(\frac{\pi}{2} - \omega t \right) & y = 4 \sin \omega t$$

Then path of resultant motion will be:

- (1) straight line
- (2) Circle
- (3) Parabola
- (4) Hyperbola

Ans. (2)

Sol. $x = 4 \sin \left(\frac{\pi}{2} - wt \right)$

 $X = 4 \cos wt$

y = 4 sin wt

 $x^2 + y^2 = 4^2$

- Aperture of a telescope is 24.4 cm wavelength of light 2440Å, then its resolving power will be :
- (1) 8.2×10^4 (2) 8.2×10^5 (3) 7.2×10^5 (4) 8.2×10^3

Ans. (2)

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

Toll Free: 1800 258 5555
7340010333
**Tracebeek.com/Resonance&u

**www.resonance&u

**www.res

This solution was download from Resonance JEE (MAIN) 2022 Solution portal

Resonance | JEE MAIN-2022 | DATE : 28-06-2022 (SHIFT-1) | PAPER-1 | MEMORY BASED | PHYSICS

Sol. R.P =
$$\frac{a}{1.22\lambda} = \frac{24.4 \times 10^{-2}}{1.22 \times 2440 \times 10^{-10}} = \frac{10^{-2}}{1.22 \times 100 \times 10^{-10}}$$

$$=\frac{10^6}{1.22}=8.2\times10^5$$

Kinetic energy of electron and photon is same then relation between wavelength of photon and wavelength electron will be:

(1)
$$\lambda_p \propto \lambda_e$$

(2)
$$\lambda_p \propto \frac{1}{\lambda_p^2}$$

(3)
$$\lambda_p \propto \lambda_e^2$$

(4)
$$\lambda_p \propto \frac{1}{\lambda_0}$$

Ans. (3)

Sol.
$$E_p = \frac{hc}{\lambda}$$

$$E_p = \frac{1}{2} mv^2$$

$$=\frac{1}{2}\frac{m^2v^2}{m}$$

$$E_e = \frac{1}{2} \frac{h^2}{\lambda_o^2 m}$$

$$\frac{hc}{\lambda_p} = \frac{h_2}{m\lambda_p^2} = \lambda_p \propto \lambda e^2$$

- Two sound waves of wavelength λ_1 = 4.08 m and λ_2 = 4.16 m gives 40 beats in 12 sec. Find speed of sound in medium.
 - (1) 500 m/s
- (2) 710 m/s
- (3) 640 m/s
- (4) 800 m/s

Ans.

Sol.
$$f_1 - f_2 =$$

$$V\left[\frac{1}{\lambda_1} - \frac{1}{\lambda_2}\right] = \frac{40}{12}$$

$$V = \frac{\lambda_1 \lambda_2}{\lambda_2 - \lambda_1} \frac{40}{12}$$

$$= \frac{4.16 \times 4.08 \times 1}{(0.08)} \times \frac{40}{12}$$

$$= 4.16 \times \frac{408}{8} \times \frac{10}{3} \times 1 = 707.2 \text{ m/s}$$

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029 Toll Free : 1800 258 5555 🚳 7340010333 🌃 tecebook com/ResonanceEdu 💆 witter.com/ResonanceEdu 🛅 www.youtube.com/resonance ac.in

This solution was download from Resonance JEE (MAIN) 2022 Solution portal

| JEE MAIN-2022 | DATE : 28-06-2022 (SHIFT-1) | PAPER-1 | MEMORY BASED | PHYSICS

- A liquid drop of radius 2 cm is broken into 64 drops. If surface tension of liquid is T = 0.075 N/m, find surface energy of one small drop:
 - $(1) 0.2355 \times 10^{-3} \text{ J}$
- (2) 0.2355 × 10⁻⁵ J
- $(3) 0.2355 \times 10^{-4} \text{ J}$
- $(4) \ 0.2355 \times 10^{-6} \ J$

Ans.

Sol.

$$\frac{4}{3}\pi \times 2^3 = 64 \times \frac{4}{3}\pi r^3 \Rightarrow r = \frac{1}{2}$$
 cm

surface energy of small drop is T \times $4\pi r^2$

$$= 0.075 \times \frac{4 \times 3.14 \times 10^{-4}}{4} = 0.2355 \times 10^{-4} \, \text{J}$$

System shown is pulled with a force F = 2Mg. Find the tension in the string

- (4) $\frac{5}{7}$ Mg

Ans.

2Mg - T = 4Ma

$$T - Mg = Ma$$

$$\mathbf{a} = \frac{g}{5}$$

$$T = M \times \frac{g}{5} + Mg = \frac{6}{5} Mg$$

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

Toll Free: 1800 258 5555
7340010333
Tacebeek.com/ResonanceEdu www.inditescenterCeEdu** on the contract of the contract o

This solution was download from Resonance JEE (MAIN) 2022 Solution portal

PAGE#5

Resonance | JEE MAIN-2022 | DATE : 28-06-2022 (SHIFT-1) | PAPER-1 | MEMORY BASED | PHYSICS

A boy 60 kg running with speed v jump on trolley of 120 kg as shown in figure, just after jump system start moving with speed 2 m/s w.r.t ground. Find speed v.

https://previouspaper.in

Ans.

Sol.

- 13. Internal energy of 2 moles of mole atomic gas at 300 K will be :
 - (1) 1500 J
- (2) 2500 J
- (3) 3500 J
- (4) 7500 J

Ans.

Sol.
$$U = \frac{3}{2} nRT$$

$$=\frac{3}{2}\times2\times\frac{25}{3}\times300 = 7500 \text{ J}$$

14. Statement-1: In an adiabatic process work done by gas w =

Statement-2: If work is done on gas, temperature will increase

- (1) Statement-1 is True, Statement-2 is True (2) Statement-1 is False, Statement-2 is True
- (3) Statement-1 is True, Statement-2 is False (4) Statement-1 is False, Statement-2 is False

Ans.

Sol. As
$$w = \frac{nR\Delta T}{1-\gamma}$$

If w is negative so, $\Delta T = +ve$ so temperature will rise

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

Toll Free: 1800 258 5555 S 7340010333 *** bectock com/Resonancedu** vivilencem/Resonancedu** www.youtube.com/resovatch** on indicated a contact of the contact of th

This solution was download from Resonance JEE (MAIN) 2022 Solution portal

RESONANCE | JEE MAIN-2022 | DATE : 28-06-2022 (SHIFT-1) | PAPER-1 | MEMORY BASED | PHYSICS

Statement-1: Pressure x time has same dimension as coefficient of viscosity.

force Statement-2: coefficient of viscosity = velocitygradient

- (1) Statement-1 is True, Statement-2 is True
- (2) Statement-1 is False, Statement-2 is True
- (3) Statement-1 is True, Statement-2 is False (4) Statement-1 is False, Statement-2 is False.

Sol.
$$F = \eta A \frac{\Delta V}{\Delta V}$$

$$\frac{F}{A} = \eta \frac{\Delta V}{\Delta V}$$

⇒Pressure x time has same dimension as coefficient of viscosity

- 16. Maths the following
 - (A) Human speech
- (i) 1 kHz
- (B) High music
- (ii) 30 MHz
- (C) Radio

(iii) 20 KHz

- (iv) 6 KHz

https://previouspaper.in

What is the relation between Q value and kinetic energy of particle to initiate the endothermic nuclear

Particle (K)
$$+ X \rightarrow Y + Q$$

(2)
$$K + Q < 0$$

(3)
$$K = Q$$

$$(4) K = 0$$

(1) Ans.

Sol.
$$K = \left(1 + \frac{m_1}{m_2}\right) | Q$$

Q is negative and K > |Q| there K + Q > 0

18. For a prism μ = cot A/2 find the angle of minimum deviation

(1)
$$\pi$$
 – 2A (2) π – A (3) 2π – A

$$(4) \pi - 3A$$

Ans.

Sol.
$$\frac{\sin\left(\frac{A+\delta_{min.}}{2}\right)}{\sin\frac{A}{2}} = \mu$$

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

Toll Free: 1800 258 5555
7340010333
tockbok com/Resonancedul www.nosunbe.com/resonance.ac.in | Contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

This solution was download from Resonance JEE (MAIN) 2022 Solution portal

PAGE#7

Resonance | JEE MAIN-2022 | DATE : 28-06-2022 (SHIFT-1) | PAPER-1 | MEMORY BASED | PHYSICS

$$\frac{\sin\left(\frac{A+\delta_{min}}{2}\right)}{\frac{\sin\frac{A}{2}}{2}} = \frac{\cot\frac{A}{2}}{2}$$

$$\frac{\sin\left(\frac{A+\delta_{\min}}{2}\right)}{\sin\frac{A}{2}} = \frac{\cos\frac{A}{2}}{\sin\frac{A}{2}}$$

$$\frac{A + \delta_{min}}{2} = \frac{\pi}{2} - \frac{A}{2}$$

$$\delta_{min} = \pi - 2A$$

In the circuit shown, there is no current in 10Ω resistance. Find the reading of ideal ammeter. 19.

(1) 8Å

(2) 10 Å

(3) 4Å

(4) 2Å

(2)

Sol.
$$\frac{R}{4} = \frac{3}{6} \Rightarrow R = 2\Omega$$

$$R_{eq} = \frac{6 \times 9}{6 + 9} = \frac{54}{15} = \frac{18}{5}$$

$$i = \frac{36}{18} \times 5 = 10\text{Å}$$

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

Toll Free: 1800 258 5555 S 7440010333 T neckek com/Resonancedul v with reson/Resonancedul w www.you.ube.com/resonance ac.in | Cin: U80302RJ2007PLC024029

This solution was download from Resonance JEE (MAIN) 2022 Solution portal

PAGE # 8

