MATHEMATICS

https://previouspaper.in

1. A variable line $\frac{x}{a} + \frac{y}{b} = 1$ is such that a + b = 4. The locus of the midpoint of the portion of the line intercepted between the axes is

- 1) x + y = 43) x + y = 12) x + y = 84) x + y = 2
- 2. The point (5, -7) lies outside the circle
 - 1) $x^2 + y^2 8x = 0$ 2) $x^2 + y^2 - 5x + 7y = 0$
 - 3) $x^{2} + y^{2} 5x + 7y 1 = 0$ 4) $x^{2} + y^{2} 8x + 7y 2 = 0$
- 3. If the circles $x^2 + y^2 = 9$ and $x^2 + y^2 + 2\alpha x + 2y + 1 = 0$ touch each other internally, then $\alpha =$
 - 1) $\pm \frac{4}{3}$ 3) $\frac{4}{3}$ 2) 1 4) $-\frac{4}{3}$

4. The locus of the midpoints of the line joining the focus and any point on the parabola $y^2 = 4ax$ is a parabola with the equation of directrix as

1) x + a = 03) x = 0. 2) 2x + a = 04) $x = \frac{a}{2}$

5. The tangents drawn at the extremeties of a focal chord of the parabola $y^2 = 16x$

- 1) intersect on x = 0
- 2) intersect on the line x + 4 = 0
- 3) intersect at an angle of 60^0
- 4) intersect at an angle of 45^0

(Space for Rough Work)

SR - 17

Turn Over

6. On the set Z, of all integers * is defined by a * b = a + b - 5. If 2 * (x * 3) = 5 then x = 1 https://previouspaper.in 2) 3

3) 5

- 4) 10
- 7. Which of the following is false ?
 - 1) Addition is commutative in N.
 - 2) Multiplication is associative in N.
 - 3) If $a * b = a^b$ for all $a, b \in N$ then * is commutative in N.
 - 4) Addition is associative in N.

8. If
$$\vec{a} \cdot \hat{i} = \vec{a} \cdot (\hat{i} + \hat{j}) = \vec{a} \cdot (\hat{i} + \hat{j} + \hat{k}) = 1$$
 then $\vec{a} =$
1) $\hat{i} + \hat{j}$
2) $\hat{i} - \hat{k}$
3) \hat{i}
4) $\hat{i} + \hat{j} - \hat{k}$
9. If \vec{a} and \vec{b} are unit vectors and $|\vec{a} + \vec{b}| = 1$ then $|\vec{a} + \vec{b}|$ is equal to
1) $\sqrt{2}$
3) $\sqrt{5}$
10. The projection of $\vec{a} = 3\hat{i} - \hat{j} + 5\hat{k}$ on $\vec{b} = 2\hat{i} + 3\hat{j} + \hat{k}$ is
1) $\frac{8}{\sqrt{35}}$
2) $\frac{8}{\sqrt{39}}$
3) $\frac{8}{\sqrt{14}}$
4) $\sqrt{14}$

(Space for Rough Work)

11.	If $f: R \to R$ is defined by $f(x) = x^3$ th https://previouspaper.in	en $f^{-1}(8) =$	
1	1) {2}	2) $\{2, 2w, 2w^2\}$	
	3) $\{2, -2\}$	4) {2, 2}	
12.	R is a relation on N given by $R = \{(x, y belongs to R)\}$	(x) 4x + 3y = 20. Which of the foll	owing
	1) (-4, 12)	2) (5, 0)	
	3) (3, 4)	4) (2, 4)	
10	TOT TO OUT A A A A A A A A A A A A A A A A A A A	1	
13.	If $Log_{10}7=0.8451$ then the position of 1 1) 16	2) 17	S
	3) 20	4) 15	
14.	$\frac{1}{2.5} + \frac{1}{5.8} + \frac{1}{8.11} + \dots$ upto <i>n</i> terms =	al	
	1) $\frac{n}{4n+6}$	2) $\frac{1}{6n+4}$	
	3) $\frac{n}{6n+4}$	$(4) \frac{n}{3n+7}$	
15.	The ten's digit in 1!+4!+7!+10!+12!+1	3!+15!+16!+17! is divisible by	
	1) 4	2) 3!	
	3) 5	4) 7	

(Space for Rough Work)

SR - 17

Turn Over

16. The equation $\frac{x^2}{2a} - \frac{y^2}{a^2} - 1 = 0$ represent the https://previouspaper.in	ents an ellipse if			
1) $\lambda > 5$	2) $\lambda < 2$			
3) $2 < \lambda < 5$	$4) 2 > \lambda > 5$			
17. The equation to the normal to the hyper	rbola $\frac{x^2}{16} - \frac{y^2}{9} = 1$ at (-4, 0) is			
1) 2x - 3y = 1	2) $x = 0$			
3) $x = 1$	(4) $y = 0$			
18. The converse of the contrapositive of the conditional $p \rightarrow -q$ is				
1) $p \rightarrow q$ 3) $\sim q \rightarrow p$	$2) \neg p \rightarrow \neg q \qquad \qquad$			
3) $\sim q \rightarrow p$	4) $\sim p \rightarrow q$			
19. The perimeter of a certain sector of a circl Then the angle at the centre of the sect	le is equal to the length of the arc of the semicircle. tor in radians is			
1) $\pi - 2$. 2) $\pi + 2$			
3) $\frac{\pi}{3}$	4) $\frac{2\pi}{3}$			
20. The value of Tan $67\frac{1}{2}^{0} + Cot \ 67\frac{1}{2}^{0}$ is	çov.			
1) √2	2) $3\sqrt{2}$			

3) $2\sqrt{2}$

(Space for Rough Work)

4) $2 - \sqrt{2}$

SR - 17

21.	. If e_1 and e_2 are the eccentricities of a hyperbola $3x^2 - 3y^2 = 25$ and its conjugate, then https://previouspaper.in		
	1) $e_1^2 + e_2^2 = 2$	2) $e_1^2 + e_2^2 = 4$	
	3) $e_1 + e_2 = 4$	4) $e_1 + e_2 = \sqrt{2}$	
22.	If p and q are prime numbers sa	tisfying the condition $p^2 - 2q^2 = 1$, then the value of	
	$p^2 + 2q^2$ is		
	1) 5	2) 15	
	3) 16	4) 17	
23.	If $A(adj A) = 5I$ where I is the	identity matrix of order 3, then $ adj A $ is equal to	
	1) 125	2) 25	
	3) 5	4) 10	
24.	The number of solutions for the	equation Sin $2x + Cos 4x = 2$ is	
	1) 0	2) 1	
	3) 2	4) Infinite	
	$\int e^x \cdot x^5 dx$ is	SY	
25.			
	1) $e^{x} \left[x^{5} + 5x^{4} + 20x^{3} + 60 \right]$	$x^{2} + 120x + 120] + C$	
	2) $e^x \left[x^5 - 5x^4 - 20x^3 - 60 \right]$	$x^2 - 120x - 120] + C$	
	3) $e^{x} \left[x^{5} - 5x^{4} + 20x^{3} - 60x^{2} + 120x - 120 \right] + C$		
4) $e^{x} \left[x^{5} + 5x^{4} + 20x^{3} - 60x^{2} - 120x + 120 \right] + C$			
(Space for Rough Work)			
	· · · · · · · · · · · · · · · · · · ·		

SR - 17

https://previouspaper.in

Turn Over

A - 1

https://previouspaper.in

26.

If f(x) is an even function and f'(x) exists, then f'(e) + f'(-e) is

1) > 0 2) 0 $3) \geq 0$ 4) < 0

If α is a complex number satisfying the equation $\alpha^2 + \alpha + 1 = 0$ then α^{31} is equal to 27.

> 2) α^2 1) a 4) *i* 3) 1

The derivative of $Sin(x^3)$ w.r.t. $Cos(x^3)$ is 28.

1) $-Tan(x^3)$ 3) $-Cot(x^3)$ 4) $Cot(x^3)$ 4) $Cot(x^3)$ A unit vector perpendicular to both the vectors $\hat{i} + \hat{j}$ and $\hat{j} + \hat{k}$ is

29.

1)	$\frac{-\hat{i} - \hat{j} + \hat{k}}{\sqrt{3}}$.2)	$\frac{\hat{i}+\hat{j}-\hat{k}}{3}$
3)	$\frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}}$	re	4)	$\frac{\hat{i} - \hat{j} + \hat{k}}{\sqrt{3}}$

30. If
$$A = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$
 and $B = \begin{vmatrix} c_1 & c_2 & c_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$ then
1) $A = -B$
3) $B = 0$
2) $A = B$
4) $B = A^2$

(Space for Rough Work)

31.	The locus of a point which moves such that is a cohttps://previouspaper.in	the sum of its distances from two fixed points
	1) a circle	2) a parabola
	3) an ellipse	4) a hyperbola
32.	The centroid of the triangle ABC where A	$\equiv (2, 3), B \equiv (8, 10) \text{ and } C \equiv (5, 5) \text{ is}$
	1) (5, 6)	2) (6, 5)
	3) (6, 6)	4) (15, 18)
33.	If $3x^2 + xy - y^2 - 3x + 6y + K = 0$ represent	nts a pair of lines, then $K =$
	1) 0	2) 9
	3) 1	4) -9
34.	The equation of the smallest circle passing	g through the points $(2, 2)$ and $(3, 3)$ is
	1), $x^{2} + y^{2} + 5x + 5y + 12 = 0$ 3) $x^{2} + y^{2} + 5x - 5y + 12 = 0$	2) $x^2 + y^2 - 5x - 5y + 12 = 0$
	3) $x^2 + y^2 + 5x - 5y + 12 = 0$	2) $x^{2} + y^{2} - 5x - 5y + 12 = 0$ 4) $x^{2} + y^{2} - 5x + 5y - 12 = 0$
	[10	0 0 1
35.	The characteristic roots of the matrix	3 0 are
		5 6
	1) 1, 3, 6	 2) 1, 2, 4 4) 2, 4, 6
	1) 1, 3, 6 3) 4, 5, 6	4) 2, 4, 6
	(Space for Ro	ough Work)

104	*	U.	A-1
36.	https://previouspaper.in If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, then $A^{-1} =$	orig.	
	$1) \frac{-1}{2} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$	2)	$\frac{1}{2} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$
	3) $\begin{bmatrix} -2 & 4 \\ 1 & 3 \end{bmatrix}$	4)	$\left[\begin{array}{cc} 2 & 4 \\ 1 & 3 \end{array}\right]$
37.	The set $\{-1, 0, 1\}$ is not a multiplicative	grou	up because of the failure of
	1) Closure law		Associative law
	3) Identity law	4)	Inverse law
38	The angle of elevation of the top of a TV to line through the foot of the tower are α , so of the tower is	2α a	and 3α respectively. If $AB = a$, the height
	1) a Tan α	2)	a Sin a
	3) a Sin 2α	4)	a Sin α a Sin 3α
39.	The angles A, B and C of a triangle ABC A is	are	in A.P. If $b: c = \sqrt{3}: \sqrt{2}$, then the angle
	1) 300	2)	15 ⁰
-	3) 750	4)	45 ⁰
40.	$Sin\left(2Sin^{-1}\sqrt{\frac{63}{65}}\right) = 5$		
	1) $\frac{2\sqrt{126}}{65}$	2)	$\frac{4\sqrt{65}}{65}$
	3) $\frac{8\sqrt{63}}{65}$	4)	$\frac{\sqrt{63}}{65}$
-	(Space for Re	ough	Work)
1 2 2			

10

A - 1

SR - 17

41.	The general solution of Sin x = https://previouspaper.in	$Cos x$ is (when $n \in Z$) given by
	1) $n \pi + \frac{\pi}{4}$	$2) 2n \ \pi \pm \frac{\pi}{4}$
	$3) n \ \pi \pm \frac{\pi}{4}$	4) $n \pi - \frac{\pi}{4}$
42.	The real root of the equation x^3	-6x + 9 = 0 is
	1) -6	2) -9
	3) 6	4) -3
43.	The digit in the unit's place of 5^4	³³⁴ is
	1) 0	2) 1
	3) 3	4) 5
44.	The remainder when $3^{100} \times 2^{50}$ i	s divided by 5 is
	1) 1	2) 2
	3) 3	4) 4
45.	$\int \frac{\sin x \cos x}{\sqrt{1 - \sin^4 x}} dx =$	est
	1) $\frac{1}{2} Sin^{-1} (Sin^2 x) + C$ 3) $Tan^{-1} (Sin^2 x) + C$	2) $\frac{1}{2} \cos^{-1}(\sin^2 x) + C$
	3) $Tan^{-1}(Sin^2x) + C$	4) $Tan^{-1}(2 Sin x) + C$
1216		

(Space for Rough Work)

https://previouspaper.in

SR - 17

https://previouspaper.in 46. The value of $\int_{a}^{b} (ax^3 + bx + c) dx$ depends on the 2) value of c1) value of b 4) values of a and b3) value of aThe area of the region bounded by $y = 2x - x^2$ and the x-axis is 47.

1) $\frac{8}{3}$ sq. units 2) $\frac{4}{3}$ sq. units 4) $\frac{2}{3}$ sq. units 3) $\frac{7}{3}$ sq. units

The differential equation $y \frac{dy}{dx} + x = c$ represents 48.

- 1) a family of hyperbolas
- 2) a family of circles whose centres are on the y-axis
- 3) a family of parabolas
- 4) a family of circles whose centres are on the x-axis

49. If
$$f(x^5) = 5x^3$$
, then $f'(x) =$

1) $\frac{3}{\sqrt[5]{x^2}}$ 3) $\frac{3}{x}$

3)
$$\frac{3}{r}$$

 $f(x) = 2a - x \quad \text{in } -a < x < a$ 50.

=3x-2a in $a\leq x$.

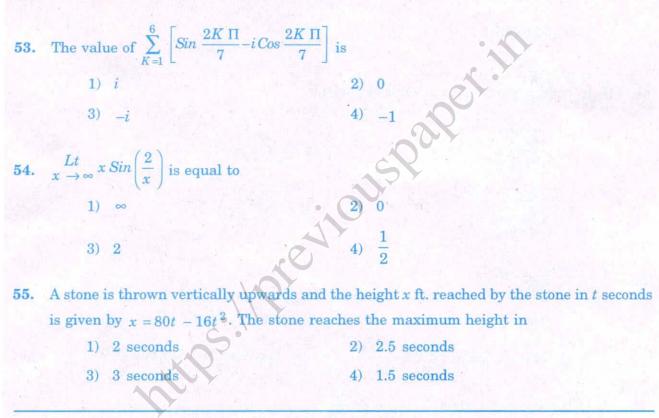
Then which of the following is true?

1) f(x) is discontinuous at x = a 2) f(x) is not differentiable at x

 $2) \quad \frac{3}{\sqrt[5]{x}}$ $4) \quad \sqrt[5]{x}$

3) f(x) is differentiable at all $x \ge a$ 4) f(x) is continuous at all x < a

(Space for Rough Work)


https://previouspaper.in

SR - 17

- 51. The maximum area of a rectangle that can be inscribed in a circle of radius 2 units is (in squhttps://previouspaper.in
 - 1) 4 2) 8π 3) 8 4) 5

52. If Z is a complex number such that $Z = -\overline{Z}$, then

- 1) Z is purely real
- 2) Z is purely imaginary
- 3) Z is any complex number
- 4) Real part of Z is the same as its imaginary part

(Space for Rough Work)

https://previouspaper.in

Turn Over

56. The maximum value of
$$\frac{Log x}{https://previouspaper.in}$$
 in $(2, \infty)$ is

1) 1
2)
$$\frac{2}{e}$$

3) e
4) $\frac{1}{e}$

57. If $f(x) = be^{ax} + ae^{bx}$, then f''(0) =2) 2ab1) 0 3) ab(a+b)4) ab

58. If $\sqrt{\frac{1+\cos A}{1-\cos A}} = \frac{x}{y}$, then the value of Tan A =

1) $\frac{x^2 + y^2}{x^2 - y^2}$ 3) $\frac{2xy}{x^2 - y^2}$

59. $\int \frac{\sec x}{\sec x + \tan x} \, dx =$

 $\frac{Sec x}{c x + Tan x} dx =$ 1) Tan x - Sec x + C3) Sec x + Tan x + C4) Log Sin x + Log Cos x + C

 $2) \quad \frac{2xy}{x^2 + y^2}$

60. If $\int f(x) dx = g(x)$, then $\int f(x) g(x) dx =$

1) $\frac{1}{2}f^{2}(x)$ 2) $\frac{1}{2}g^{2}(x)$ 3) $\frac{1}{2} [g'(x)]^2$ 4) f'(x) g(x)

(Space for Rough Work)

SR - 17