CHEMISTRY

1.	potassium hydroxide solution. On	npound gave an oily liquid on heating with bromine and shaking the product with acetic anhydride, an antipyretic indicate that the starting compound is:
	 Acetamide Aniline 	2) Nitrobenzene4) Benzamide
2.	The silver salt of a fatty acid on r	efluxing with an alkyl halide gives an :
	1) ether	2) amine
	3) acid	4) ester

- Pick out the one which does not belong to the family: 3.
 - 1) Ptyalin

2) Lipase

3) Pepsin

4) Cellulose

ester

- Which of the following is wrongly matched? 4.
 - Decomposition of $H_2{\cal O}_2$ First order reaction.
 - Combination of $\boldsymbol{H_2}$ and $\boldsymbol{Br_2}$ to give \boldsymbol{HBr} Zero order reaction.
 - Saponification of $CH_3COOC_2H_5$ second order reaction.
 - Hydrolysis of CH_3COOCH_3 pseudo unimolecular reaction.
- The diameter of colloidal particles range from: 5.
 - 1) $10^3 m$ to $10^{-3}m$

 $10^{-3}m$ to $10^{-6}m$

 $10^{-6}m$ to $10^{-9}m$

 $10^{-9}m$ to $10^{-12}m$

- 6. The number of 2 p electrons having spin quantum number $S = -\frac{1}{2}$ are:
 - 1) 2

2) 3

3) 6

- 4) 0
- 7. Pick out the alkane which differs from the other members of the group:
 - 1) 2 methyl butane

- 2) 2, 2 dimethyl butane
- 3) 2, 2 dimethyl propane
- 4) Pentane
- 8. 56 g of nitrogen and 8 g of hydrogen gas are heated in a closed vessel. At equilibrium 34 g of ammonia are present. The equilibrium number of moles of nitrogen, hydrogen and ammonia are respectively:
 - 1) 1, 1, 2

2) 2, 1, 2

3) 1, 2, 2

- 4) 2, 2, 1
- 9. A process is taking place at constant temperature and pressure. Then
 - 1) $\Delta H = 0$

2) $\Delta S = 0$

3) $\Delta H = \Delta E$

- 4) $\Delta H = T \Delta S$
- 10. In a galvanic cell, the electrons flow from:
 - 1) Anode to cathode through the external circuit.
 - 2) Cathode to anode through the external circuit.
 - 3) Anode to cathode through the solution.
 - 4) Cathode to anode through the solution.

11.	On treating a mixture of two alkyl halides	s with sodium metal in dry ethe	er, 2-methyl propane
	was obtained. The alkyl halides are :	V	

- Chloromethane and Chloroethane
- Chloromethane and 1- Chloropropane
- 2 Chloropropane and Chloromethane
- 4) 2 Chloropropane and Chloroethane
- Which of the following statements about benzyl chloride is incorrect?
 - 1) It is a lachrymatory liquid and answers Beilstein's test.
 - It gives a white precipitate with alcoholic silver nitrate.
 - It is less reactive than alkyl halides.
 - 4) It can be oxidised to benzaldehyde by boiling with copper nitrate solution.
- The main product obtained when a solution of sodium carbonate reacts with mercuric chloride 13.
 - 1) $HgCO_3$

2) HgCO₃ · Hg (OH)₂
 4) HgCO₃ · HgO

3) $Hg(OH)_{o}$

- In the electrothermal process, the compound displaced by silica from calcium phosphate is: 14.
 - 1) Phosphorus

- 2) Phosphorus pentoxide
- Calcium phosphide
- 4) Phosphine
- The enthalpy of combustion of methane at 25°C is 890 kJ. The heat liberated when 3.2 g of 15. methane is burnt in air is:
 - 890 kJ

178 kJ

 $445 \, kJ$

 $278 \, kJ$

16.	The pres	sure and n dioxide	temperatur gas would b	e of 4 dm³ of 0 e :	carbor	r dioxide ga	s are doubled. The	en the volu	.me	
	1)	$4\ dm^3$	÷1	2 - 1"5	2)	$8 dm^3$	a = 4	**		
	3)	$2 dm^3$. 101	4)	$3 dm^3$	1.	(c.		
17.	4g of cop	per was d gave 5g o	issolved in of	concentrated The equivaler	nitric it wei	acid. The c ght of copp	opper nitrate solu er is :	tion on stre	ong	
	1)	12	eta V	a · · ·	2)	20 ·		·		
	3)	23		e de de de C	4)	32	F	. B		
18.	In the m	nanufactu	re of ammo	nia by the Ha	ber's	process,				
	$N_{2(g)} + 3H_{2(g)} \implies 2NH_{3(g)} + 92.3 \text{ kJ, w}$					the followi	ng conditions is u	nfavourab	le?	
	1) Reducing the temperature				2) Removing ammonia as it is formed					
	3)	Increasi	ing the temp	perature	4)	Increasing	g the pressure			
19.	The che	mical equ	ilibrium of	a reversible r	eactio					
<i>a</i> .	1)	concent	ration of the	e reactants	2)	Temperat	ure	6		
	3)			8 5	4)	Catalyst				
20.	Cumene		s the most	important co	mmer	cial method	l for the manufact	ure of phe	nol.	
٠		Vinyl be	enzene nyl ethyl bei	nzene	(2) (4)	Propyl be Ethyl ben	0. 20 %	'1,	*.•,	

21.	A solution contains 1.2046 x 103	24 hydrochlorio	c acid mol	ecules i	n one dm	³ of the s	solution.	The
	strength of the solution is:				. "		6 (C) • (C)	

1) 4 N

2) 8 N

3) 6*N*

4) 2N

Nuclear theory of the atom was put forward by: 22.

1) Neils Bohr

2) J. J. Thomson.

3) Rutherford

4) Aston

In acetylene molecule, the two carbon atoms are linked by: 23.

1) three sigma bonds

- 2) three pi bonds
- 3) one sigma bond and two pi bonds 4) two sigma and one pi bond

24. The enthalpy of the reaction,

$$H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O_{(g)}$$
 is ΔH_1 and that of

 $H_{2(g)} + \frac{1}{2}O_{2(g)} \to H_2O_{(l)}$ is ΔH_2 . Then

1) $\Delta H_1 > \Delta H_2$

3) $\Delta H_1 < \Delta H_2$

- 2) $\Delta H_1 = \Delta H_2$ 4) $\Delta H_1 + \Delta H_2 = 0$
- A radioactive isotope decays at such a rate that after 192 minutes only $\frac{1}{16}$ of the original amount remains. The half life of the radioactive isotope is:
 - 12 min

24 min

3) 32 min

4) 48 min

26.	The reag	ent which does not giv	e acid chioride oi	i treating with a ca.	boxyne acid is .
	1)	$SOCl_2$	2)	PCl_3	p I
.e	3)	$PCl_{_{5}}$	4)	Cl_2	
27.	Among t	he halogens, the one w	hich is oxidised l	by nitric acid is:	· ·
	1)	Chlorine	2)	Bromine	
	3)	Fluorine	4)	Iodine	,
28.	The met	al which does not form	ammonium nitra	ate by reaction with	dilute nitric acid is :
	1)	Pb	2)	Mg	
	3)	Al	4)	Fe	
29.	The eler	nents with atomic num	bers 9, 17, 35, 53	3, 85 are all :	
	1)	Heavy metals	2)	Light metals	
	3)	Noble gases	4)	Halogens	
30.		lectrolytic method of ol narge in order to :	otaining alumini	um from purified ba	auxite, cryolite is added
	1)	dissolve bauxite and	render it conduct	or of electricity.	·
ě	2)	lower the melting po	int of bauxite.		
- 180 - 1	. 3)	minimise the heat los	ss due to radiatio	n.	ve.
	4)	protect aluminium p	roduced from oxy	gen.	
			(Space for Rough	Work)	

31.

Which of the following is not an amphoteric substance?

181	1)	H_2O	2)	NH_3	* **	£				
	. 3)	HNO_3	4)	HCO_3^-		а				
32.	When 50	$0 \text{ cm}^3 \text{ of } 0.2 N H_2 SO_4 \text{ is mix}$	ed with 50 c	m³ of 1 <i>N KOI</i>	H, the heat libera	ted is:				
	1)	573 kJ	2)	573 J						
3	3)	11.46 kJ	4)	$57.3 \mathrm{\ kJ}$						
33.	An artif	icial radioactive isotope gav	$e^{-\frac{14}{7}N}$ after	two successi	ve eta -particle em	issions. The				
	number	of neutrons in the parent n	ucleus must	be:	• ^					
	1)	5	2)	7		,				
	3)	9	4)	14						
34.	Stainles	s steel does not rust because	e :		20	,				
e	1)	Nickel present in it, does r	not rust		00 7					
	2)	Iron forms a hard chemica	l compound	with chromiu	ım present in it.					
ii.	3)	Chromium and nickel combine with iron.								
ē.	4)	4) Chromium forms an oxide layer and protects iron from rusting.								
35.	Which o	f the following combinations	s can be used	d to synthesis	e ethanol ?	ž				
	1)	CH ₃ Mg I and CH ₃ COO	C_2H_5			² •				
	2)	$CH_3 Mg I$ and $HCOOC_2H_6$	5.	. 1	ę.	*				
200	3)	CH ₃ Mg I and CH ₃ CO CH	I_3		•					
190	4)	CH. Mg I and C. H. OH	7 F.	E	<u>13</u>					

	П		
36.	The reaction, $2SO_{2(g)} + O_{2(g)} \Longrightarrow 2SO_{3(g)}$ is separately. The ratio of the reaction velocit		*
٠	1) 4:1 3) 1:8	150	8:1 1:4
37.	In a mixture of acetic acid and sodium acet acid is increased ten times. Then the pH of		
	1) decreases ten fold	2)	increases ten fold
	3) increases by one	4)	decreases by one
38.	When a mixture of methane and oxygen is main product formed is:	pass	ed through heated molybdenum oxide, the
	1) Methanol	2)	Methanal
	3) Methanoic acid	4)	Ethanal
39.	Benzene can be obtained by heating either b	enzo	oic acid with ' X ' or phenol with ' Y '. ' X ' and ' Y '
	are respectively:	100	20°7
	1) Zinc dust and sodium hydroxide	2)	Soda lime and copper
11	3) Zinc dust and soda lime	4)	Soda lime and zinc dust
40.	An organic compound is boiled with alcohol	olic p	ootash. The product is cooled and acidified
6	with HCl. A white solid separates out. The	star	ting compound may be :
-	1) ethyl acetate	2)	methyl acetate
	3) ethyl benzoate	4)	ethyl formate

41. In qualitative analysis, in order to detect second group basic radical, H_2S gas is passed in the presence of dilute HCl to :

11

- 1) decrease the dissociation of H_2S
- 2) increase the dissociation of salt solution
- 3) increase the dissociation of $H_{\rho}S$
- 4) decrease the dissociation of salt solution
- **42.** Aluminium displaces hydrogen from dilute HCl whereas silver does not. The E.M.F. of a cell prepared by combining Al / Al^{+3} and Ag / Ag^{+} is 2.46 V. The reduction potential of silver electrode is + 0.80 V. The reduction potential of aluminium electrode is :
 - 1) 3.26 V

2) - 1.66 V

3) + 1.66 V

- 4) -3.26 V
- **43.** The first fraction obtained during the fractionation of petroleum is:
 - 1) Gasoline

- 2) Diesel oil
- 3) Hydrocarbon gases
- 4) Kerosene oil
- **44.** Which of the following compounds gives trichloromethane on distilling with bleaching powder?
 - 1) Ethanol

2) Methanol

3) Methanal

4) Phenol

- 45. Benzoin is:
 - 1) α hydroxy aldehyde
 - 2) α hydroxy ketone
 - 3) compound containing an aldehyde and a ketonic group
 - 4) α , β unsaturated acid

46.		city constant of a ture is raised to 3			9	$.2 \times 10^{-3}$		When	the
* te:	1)	9.6×10^{-3}	2) 1.	28×10^{-2}		* *	, :		
	3)	6.4×10^{-3}	4) 3.	2×10^{-4}	v				

- 47. Select the pK_a value of the strongest acid from the following : 1) 2.0 2) 4.5
 - 3) 1.0 4) 3.0
- 48. Pick out the unsaturated fatty acid from the following:1) Oleic acid2) Palmitic acid
 - 3) Stearic acid 4) Lauric acid
- 49. Nylon is not a:
 1) Copolymer
 2) Homopolymer
 3) Condensation polymer
 4) Polyamide
- **50.** The coal tar fraction which contains phenol is :
 - Heavy oil
 Middle oil
 Light oil
 Green oil

			*						
51.	The cor	npounds A and B a	are mixed	in equi	molar	proporti	on to f	orm the	products,
		$\Longrightarrow C+D$. At equili			e.				250
		t for the reaction is:		*	1	W			
	.1)	2.5	8	2)	0.25		1	** - [* *
	3)	0.5		4)	4.0				* 9
52.	In froth	floatation process fo	r the purific	ation o	f ores. t	he partic	les of or	e float be	cause :
	1)	They are insoluble	·	1 1 2		F 1		· 11900 90	1 46
	2)	They bear electrost	atic charge		:	e Com		4	*
	3)	Their surface is not	-	ed by w	ater				x*
	4)	They are light		,	g				0
53.	Which o	f the following stater	nents about	amorp	hous so	lids is inc	correct '	? • :	
	1)	There is no orderly	10.			1			20 20 20
	2)	They are rigid and	. ~	-,		1			
	3)	They melt over a ra	_		9.		* • • •		
20	4)	They are anisotrop			ži.		7 7	- No.	
P.4	TT 1	1:00							2
54.	Hydroge	n diffuses six times	taster than	gas A . T	he mol	ar mass	of gas A	is:	
	1)	24	e	2)	36	6	* * *	*	**
	3)	72	,	4)	6	v .		12	÷
55.	Dulong a	and Petit's law is val	id only for :	4		1	· ·		
	1)	gaseous elements	- 0	2)	solid e	lements			• ,
	3)	metals		4)	non-m				*
				-/		COLLO			

56.	Identify the	gas which	is readily	adsorbed	by activated	charcoal	:
------------	--------------	-----------	------------	----------	--------------	----------	---

1) H_2

 O_2

3) N_2

4) SO₂

57. If the distance between Na^+ and Cl^- ions in sodium chloride crystal is X pm, the length of the edge of the unit cell is :

1) $\frac{X}{2}$ pm

2) 2 X pm

3) 4 X pm

4) $\frac{X}{4}$ pm

58. Which of the following statements is incorrect?

- 1) In K_4 [Fe (CN)₆] the ligand has satisfied both primary and secondary valencies of ferrous ion.
- 2) In $[Cu(NH_3)_4]SO_4$, the ligand has satisfied only the secondary valency of copper.
- 3) In $K_3[Fe(CN)_6]$, the ligand has satisfied only the secondary valency of ferric ion.
- 4) In $K_3[Fe(CN)_6]$, the ligand has satisfied both primary and secondary valencies of ferric ion.
- 59. 2 Acetoxy benzoic acid is used as an:
 - 1) antiseptic

2) antipyretic

3) antimalarial

- 4) antidepressant
- 60. A nucleoside on hydrolysis gives:
 - 1) an aldopentose and a heterocyclic base.
 - 2) an aldopentose and orthophosphoric acid.
 - 3) a heterocyclic base and orthophosphoric acid.
 - 4) an aldopentose, a heterocyclic base and orthophosphoric acid